Страница 10 из 16
Правило VII
Для завершения знания надлежит все относящееся к нашей задаче вместе и порознь обозреть последовательным и непрерывным движением мысли и охватить достаточной и методической энумерацией
Познающее мышление направлено от простого и самоочевидного к сложному. При этом достоверность познания определяется не только последовательностью мысли, но и полнотой перечисления всех факторов, которые должны быть учтены в процессе познания. Принцип последовательного перечисления всех факторов, достаточных для достижения достоверного знания, Декарт называет энумерацией. В таком понимании понятие энумерации сближается с понятием индукции. Однако если последняя в традиционном понимании обозначает получение нового знания путем перехода от частного к общему, то энумерация представляет собой способ упорядочивания исследуемых положений.
Соблюдение настоящего правила является необходимым, для того чтобы считать достоверными те истины, которые, как мы говорили выше, не выводятся непосредственно из первичных и самоочевидных принципов. Действительно, иногда это осуществляется через посредство столь длинного ряда последовательных положений, что, достигнув их, мы с трудом восстанавливаем в памяти всю ту дорогу, которая нас к ним привела. Поэтому мы и говорим, что должно оказывать помощь памяти в ее слабости своего рода последовательным движением мысли. Так, например, если я нахожу посредством различных действий отношение сначала между величинами А и B, затем между B и C, между С и D и, наконец, между D и Е, я уже при этом не вижу, какое отношение существует между А и Е, и не могу точно установить его по известным мне отношениям до тех пор, пока не вспомню их все. По этой причине я должен обозревать их путем последовательного движения представления так, чтобы оно представляло одно из них и в то же время переходило бы к другому, до тех пор пока я не научусь переходить от первого к последнему настолько быстро, чтобы почти без участия памяти охватывать их все одновременно. Такой метод, помогая памяти, в то же время устраняет медлительность ума и как бы увеличивает его вместимость.
Декарт указывает, что восхождение мысли к простым исходным предпосылкам может потребовать длинного ряда выводов, который трудно удержать в памяти. Требуется навык, чтобы, созерцая отдельное, сразу усматривать переход к следующему таким образом, что вся последовательность непосредственно усматривается умом без участия памяти. При этом должны быть соблюдены принципы, на которых выстраивается эта последовательность: непрерывность, достаточная полнота для удостоверения истины и упорядоченность. Эти принципы лежат в основе энумерации.
Однако добавим, что это движение не должно нигде прерываться. Действительно, нередко те люди, которые пытаются весьма быстро и из отдаленных принципов вывести какое-либо следствие, не обозревают всей цепи промежуточных заключений с должной тщательностью и опрометчиво перескакивают через многие из них. Но зато, как только они пропускают одно, хотя бы самое незначительное из всех, цепь их тотчас же прорывается и вся достоверность заключения колеблется.
Кроме того, я говорю, что для завершения знания необходима энумерация, так как если все другие предписания и содействуют разрешению многих вопросов, то только посредством энумерации мы можем создать всегда прочное и достоверное суждение о вещах, с которыми мы имеем дело. Благодаря ей ничто совершенно не ускользает от нас и мы оказываемся осведомленными понемногу обо всем.
Полнота энумерации предполагает исследование всех необходимых для достоверного познания факторов таким образом, что если бы после ее применения что-либо и осталось непознанным, то только по причине того, что оно принципиально превосходит возможности человеческого познания.
Следовательно, эта энумерация, или индукция, есть столь тщательное и точное исследование всего относящегося к тому или иному вопросу, что с помощью ее мы можем с достоверностью и очевидностью утверждать: мы ничего не упустили в нем по нашему недосмотру. Если же, несмотря на ее применение, искомая вещь остается скрытой от нас, мы будем по крайней мере более опытными, твердо убедившись, что ни один из известных нам путей не может привести к познанию этой вещи, а если случайно, как это бывает часто, мы сумели обозреть все доступные человеку ведущие к ней пути, то мы можем смело утверждать, что познание ее превышает силы человеческого ума.
Поскольку перечислить абсолютно все факторы в энумерации невозможно, Декарт вводит понятие достаточной энумерации. Она достаточна, если более достоверный вывод нельзя получить каким-либо иным способом, не считая интуиции. Порой для такой энумерации нет необходимости перечислять все факторы. Например, для вывода о том, что разумная душа бестелесна, нет смысла учитывать разумные души всех людей. Если энумерация не является достаточной, то она ведет к заблуждению.
Кроме того, отметим, что под достаточной энумерацией, или индукцией, мы разумеем лишь то, посредством чего истина может быть выведена легче, нежели всякими другими способами доказательства, за исключением простой интуиции, и коль скоро познание той или иной вещи нельзя свести к индукции, надлежит отбросить все узы силлогизмов и вполне довериться интуиции как единственному остающемуся у нас пути, ибо все положения, непосредственно выведенные нами одно из другого, если заключение ясно, уже сводятся к подлинной интуиции. Но когда мы выводим какое-либо положение из многочисленных и разрозненных положений, то объем нашего интеллекта часто оказывается недостаточно большим, для того чтобы охватить их все единым актом интуиции; в данном случае интеллекту надлежит удовольствоваться надежностью этого действия. Подобным же образом мы не можем различить одним взглядом все кольца слишком длинной цепи, но тем не менее если мы видели соединение каждого кольца с соседним порознь, то этого нам уже будет достаточно, чтобы сказать, что мы видели связь последнего кольца с первым.
Я сказал, что это действие должно быть достаточным, ибо оно часто может иметь погрешности и, следовательно, вводить в заблуждение. А именно, когда, обозрев посредством энумерации всю цепь положений совершеннейшей очевидности, мы, однако, пропускаем одно, хотя бы и самое незначительное из них, цепь уже прорывается и заключение теряет всю свою достоверность. Иногда же мы, правда, охватываем энумерацией все положения, но не различаем каждого положения в отдельности и таким образом получаем обо всем лишь смутное представление.
Далее, иногда эта энумерация должна быть полной, иногда раздельной, а в иных случаях от нее не требуется ни того ни другого, поэтому я и говорил, что она должна быть достаточной. Действительно, если я хочу посредством энумерации доказать, сколько родов существ являются телесными или каким-либо образом воспринимаются чувствами, я не буду утверждать, что их имеется столько-то, а не более, пока я твердо не удостоверюсь в том, что охватил их все своей энумерацией и различил их порознь друг от друга. Но если я тем же способом хочу доказать, что разумная душа бестелесна, то мне незачем прибегать к полной энумерации, но достаточно будет собрать все тела в несколько групп таким образом, чтобы доказать, что разумная душа не относится ни к одной из них. Если, наконец, я хочу доказать посредством энумерации, что площадь круга больше площадей всех других фигур, описанная которых равна его окружности, то нет необходимости исследовать все фигуры, но достаточно доказать это на нескольких из них, чтобы путем индукции вывести то же самое и для всех других.
Если факторы определенным образом упорядочены в энумерации, то их можно свести в классы и тогда нет необходимости учитывать каждый в отдельности. Тем более что это и невозможно. Трудность здесь в том, что может оказаться много разных способов упорядочить энумерацию, и тогда исследователь оказывается перед непростым выбором. Однако он всегда должен руководствоваться принципом сведения сложного явления к простым исходным предпосылкам с тем, чтобы на их основе объяснять другие явления.