Страница 9 из 25
А затем, когда Герр подтягивался вверх, используя уже другую группу мышц, эластичная паутина постепенно отдавала накопленную энергию, помогая ему подниматься и вдвое уменьшая нагрузку на его плечи и бицепсы. Вскоре Герр уже оказался на высоте шестиэтажного дома.
На видео, которое было тогда снято, можно увидеть его партнера, никакого не инвалида, пытающегося угнаться за Герром, который первым достигает вершины и победно вскидывает кулак. Он по-прежнему был полон задора. И благодаря новым технологиям он развивал свои возможности еще дальше.
«Можно ли, присоединив к телу какой-то механизм, извлечь из тела больше работы, прежде чем оно устанет? – спрашивает Герр. – Я задался этим вопросом. Ответ – да. В сущности, вы как бы удваиваете мышечную массу, но общая нагрузка остается той же, поэтому вы можете сильно отсрочить наступление усталости. Попросту говоря, благодаря этому приему можно сделать человека вдвое сильнее».
У Герра возник и другой вопрос, на который его вдохновили приобретенные познания. Может быть, он сумеет использовать то, что известно о природных пружинах тела человека и других животных, для увеличения скорости бега? Чтобы это выяснить, он стал конструировать кроссовки нового типа. В каждой имелось по две пружины – на пятке и на носке. Герр соединил эти пружины углеродной полоской, идущей по всей длине подошвы обуви. Когда пятка бегуна ударяется о землю, пяточная пружина сжимается, накапливая потенциальную энергию. По мере того как ступня наклоняется вперед, постепенно перенося туда же вес тела, потенциальная энергия пяточной пружины распространяется под точками контакта стопы с землей, пока не достигнет носка. А затем, в тот момент, когда бегун отрывает носок от земли, передняя пружина отдает свою энергию, придавая бегуну дополнительный импульс, направленный вперед. Герр провел множество экспериментов и наконец определил оптимальные места размещения пружин для такого усиления энергии. Система позволяла не только увеличивать скорость бега и снижать метаболические затраты на бег, но и на целых 20 % уменьшать силу воздействия бега на суставы.
Герр предложил свои кроссовки компании Nike, которая отнеслась к его изобретению весьма серьезно, поскольку даже обратилась к гарвардцу Томасу Макмэхону, одному из тогдашних ведущих специалистов по биомеханике, чтобы он оценил идею. И хотя компания в итоге все-таки не стала заниматься этим продуктом, он произвел большое впечатление на Макмэхона. Так Герр нежданно-негаданно заполучил идеального наставника, способного вывести его творения на следующий уровень. В 1990 г. Макмэхон выстроил подробную физико-математическую схему, которая стала основой для всех дальнейших работ в этой сфере, поскольку сводила сложнейшую динамику человеческого передвижения в пространстве к довольно простым уравнениям, позволявшим делать точные предсказания насчет движения.
Макмэхон уговорил Герра записаться на курс, который он читал в Гарварде, а позже стал научным руководителем диссертации альпиниста. Макмэхон предложил не воспринимать все эти суставы, мышцы, сухожилия и связки ноги как отдельные детали, а рассматривать всю конечность как одну пружину. Благодаря такому подходу ахиллесово сухожилие и природные пружины свода стопы можно было считать просто звеньями единого прыгучего механизма. Метод сработал, поскольку, как и в случае цельной пружины, ту силу, которую развивает конечность, и степень сжатия конечности можно выразить через еще один упрощенный параметр – совокупную нагрузку со стороны различных частей тела, воздействующую на единичную точку в пространстве (и оказывающую на нее давление, направленное вниз или «вовне»). Физики называют эту штуку точечной массой.
Макмэхон показал: если известна точечная масса и угол, под которым, например, ступня соприкасается с землей, можно предсказать, сколько времени нога проведет на поверхности, прежде чем подскочить вверх, и насколько она при этом сожмется. Можно определить, с какой «взрывной» силой нога будет отрываться от земли и как центр масс движущегося человека будет перемещаться по воздуху между шагами. Верно и обратное: если измерить, сколько времени нога остается на земле между шагами, можно (узнав и некоторые другие параметры) рассчитать точечную массу.
Под руководством Макмэхона неутомимый Герр несколько месяцев разбирался в изящной и чарующей механике движения лошадей, скачущих галопом. Может показаться, что временами все четыре ноги животного одновременно находятся в воздухе: пожалуй, биомеханика лошадей позволяет им подойти к состоянию полета ближе, чем каким-либо другим четвероногим. Однако эта биомеханика долго оставалась тайной для человека. Как скакуны ухитряются сохранять равновесие? Герр пришел к выводу, что лошадь использует свои ноги в качестве податливых пружин, идеально откалиброванных для того, чтобы обеспечить оптимальную жесткость, которая способствует и высокой стабильности, и высокой скорости, создавая тонко выверенный баланс – максимизируя время пребывания в воздухе так, чтобы при этом животное все-таки еще могло контролировать свое движение. После кропотливой работы Герр построил математическую модель, которая смогла выразить собой разгадку этой тайны и объяснить, почему лошадиный бег так изящен.
Герр получил кандидатскую степень, смоделировав динамику передвижения целого ряда четвероногих животных – от мышей до слонов. Но в ходе этой работы Герр начал обдумывать более амбициозный проект, хотя многие в то время сочли бы его попросту неосуществимым. Годами Герру приходилось полагаться на жесткие, неуклюжие протезы, которые совершенно не позволяли проявлять подвижность, мощь и непринужденность, какими некогда обеспечивали его природные ноги. Он вынужден был карабкаться на скалы, чтобы ощутить вкус подлинной свободы движений. Теперь же Герр задумался, нельзя ли сконструировать устройство получше. Ему хотелось заполучить искусственные конечности, которые позволили бы ему ходить почти так же, как на обычных человеческих ногах, с которыми он родился.
Хью Герр поднимается с кресла в своем кабинете со стеклянными стенами, расположенном на третьем этаже Медиа-лаборатории МТИ, и ведет меня по узенькому мостику, откуда открывается вид на гигантское рабочее пространство. Держась за металлические перила винтовой лесенки, Герр аккуратно и без видимых усилий спускается вниз на паре механических ног, которые сделал он сам.
Вскоре мы оказываемся в колодце просторной лаборатории – мастерской чародея-механика, где громоздятся штабеля ящиков с инструментами, где длинные верстаки завалены молотками, дрелями и проводами, где полным-полно индивидуальных клетушек-ячеек для каждого бойца небольшой армии аспирантов и молодых инженеров, работающих с Герром. Целые заросли проводов свисают со столов, исчезая в невидимых приборах и двигателях, таящихся в металлических шкафах и коробках: чем-то это напоминает джунгли, захватившие форт. Если такой беспорядок – признак творческого таланта, то здесь явно не испытывают недостатка в идеях.
Мы находимся в самом сердце амбициозного проекта, руководимого Герром. Цель проекта – разгадать тайны человеческого движения и использовать эти знания для того, чтобы конструировать бионические части тела, способные воспроизводить это движение, а иногда и превосходить возможности, которые дала человеку природа.
Вслед за Герром я направляюсь к его новому 3D-принтеру, который он намерен использовать для печати протезов. Затем мы проходим мимо верстаков, на которых лежит масса отдельных искусственных рук и искусственных ног; эту картину кое-где разнообразят мониторы. Наконец мы останавливаемся перед одной из самых заметных и необычных достопримечательностей помещения – длинной дорожкой бегового тренажера, чуть приподнятой над полом. По форме она походит на изрядный фрагмент движущейся ленты, по которой мы ходим в аэропортах. На дорожку устремлены под разными углами более 30 камер: какие-то свешиваются с потолка, какие-то располагаются вокруг.