Добавить в цитаты Настройки чтения

Страница 11 из 25

Чтобы наглядно следить за своими достижениями, Герр создал собственного виртуального двойника. Изобретатель демонстрирует мне его на большом мониторе.

Это примитивное изображение туловища с ногами, которое бредет по экрану, словно пьяный или слепой. Хотя графика здесь самая простая, нижние конечности этой мультяшной фигурки состоят из сотен виртуальных сухожилий, мышц и костей, и каждый из этих элементов запрограммирован так, чтобы служить моделью той или иной части реальной человеческой ноги. Какой крутящий момент прикладывается суставом к лодыжке или колену? Каков уровень электрической активности в той или иной мышце? Как и когда сухожилия ноги захватывают и высвобождают энергию? Схематический рисунок человечка вбирает в себя все эти данные и отображает их на экране, показывая, как реальный человек (возможно, с завязанными глазами) будет ходить, соблюдая все физические законы движения.

Те же математические описания, определяющие, каким образом ходит виртуальная фигурка, задействованы в программах, контролирующих движение составных частей икроножно-ступневых протезов, которые в этот самый день носит Герр.

Поразительна сама мысль о том, что сейчас, когда я стою с ним рядом, крошечные микропроцессоры, спрятанные где-то внутри всех этих механизмов, невидимых сквозь штанины, способны каждую секунду выполнять невообразимо сложные расчеты, управляя поведением всех-всех частей бионических конечностей Герра. Изобретатель вывел эти формулы на основе измерений и наблюдений, производимых в реальном мире. При этом он исследовал не только то, как реальные человеческие конечности ведут себя по отдельности, но и то, как они взаимодействуют друг с другом. Так, жесткость механического лодыжечного сустава в каждый данный момент может зависеть, в частности, от того, с какой силой моторчики протеза, воспроизводящие природную икроножную мышцу, воздействуют на приводы, воспроизводящие ахиллесово сухожилие. Однако здесь может оказывать свое влияние и то, в какую сторону повёрнут коленный сустав и на какой угол он согнут: возможно, тем самым учитывается скорость, с которой нижняя часть ноги движется вперед или вниз. Короче говоря, в каждое мгновение приходится иметь в виду несметное количество самых разных факторов.

Но компьютерная программа, разработанная Герром, не говорит всей бионической ноге, как ей шевелиться. Изобретатель любит подчеркивать, что это не «проигрыватель», который лишь воспроизводит заданные движения.

«Проигрыватель тут бы не сработал, – отмечает он. – Вдруг вы наступите на банановую кожуру?»

Вместо этого электронная начинка, тщательно запрограммированная Герром и его командой, сообщает каждой отдельной части бионической конечности, как реагировать на множество разновидностей «входящих сигналов», поступающих извне. Такая реакция проявляется, например, в степени натяжения искусственных сухожилий или в углах сгиба искусственных связок и уровне напряжения искусственных мышц, которые окружают эти сухожилия. Как и обычная нога, робоконечность Герра представляет собой систему динамического сотрудничества многих различных частей, толкающих и тянущих друг друга, сгибающихся, растягивающихся, сжимающихся. Он объясняет, что в результате «появляются» качества и поведение, которые иногда удивляют даже его самого.

«Мы не говорим модели, как двигаться, – заявляет он. – Это модель говорит нам, как она движется».

«Сенсоры, которые установлены на протезах, проводят измерения, и эти данные вводятся в модель, и модель сообщает нам, насколько жестким должен быть тот или иной сустав в определенное время и какую силу он должен развивать, – добавляет Герр. – А значит, поведение физического, материального протеза диктуется этим математическим описанием поведения организма. Эта штука ведет себя так, словно обладает мышцами и сухожилиями, хоть она и сделана из алюминия, кремния и углерода. Несмотря на то что она сплошь состоит из синтетических деталей, она ведет себя так, словно это плоть и кости».

Всё это кажется каким-то чудом, но главным препятствием стал отнюдь не сбор данных, а выяснение того, как обеспечивать этих роботов автономным питанием. Первые модели Герра соединялись с рюкзаком, содержавшим почти 13 фунтов [примерно 6 кг] электроники, которая служила как электроусилитель и подключалась к обычной розетке: не очень-то удобный вариант для передвижения. Аспиранты Герра месяцами бились над тем, чтобы уменьшить потери при передаче энергии, а заодно и снизить энергозатраты. Но они так и не сумели сконструировать моторизованную лодыжку, которая была бы достаточно компактной и достаточно мощной, чтобы сравняться с обычной.





Герр все-таки отыскал решение, обратившись к одному из самых первых персонажей, изучавшихся в научной литературе о передвижении, – к блохе[11] с ее несравненным катапультирующим механизмом. В 60-е годы ученые показали, что блоха способна придавать себе ускорение в 100 раз большее, чем то, которое могла бы спонтанно развить мышца. Чтобы проделать такой трюк, блоха постепенно напитывает энергией волокнистые пружиноподобные структуры, прикрепленные к мышце, и хранит там эту энергию, пока не придет пора резко оторваться от поверхности. В этот момент вся накопленная энергия высвобождается одновременно. Эта невероятно мощная катапульта гораздо эффективнее тех, которые использовали средневековые рыцари при осаде городов.

Герр понимал, что небольшого моторчика еще недостаточно, чтобы с нужной быстротой генерировать и доставлять энергию, необходимую для того, чтобы при ходьбе нога-протез могла отталкиваться от поверхности с той же силой, что и натуральная нога: сами по себе мышцы блохи тоже не могут вырабатывать достаточно энергии, чтобы катапультировать ее с хвоста собаки на спину. Но Герр понял: если мотор в искусственной ноге будет постепенно закачивать энергию в пружину (подобно тому как блоха закачивает энергию в свои ноги), скорость генерации энергии уже не будет иметь значения. Когда придет время отскакивать от земли, эта пружина сможет единовременно высвобождать всю накопленную энергию, отталкивая ступню от поверхности с такой же «взрывной силой», с какой это делает обычная человеческая лодыжка.

Сэмюэл Ау, главный из герровских аспирантов, занимавшихся этим проектом, несколько месяцев безуспешно пытался сделать подходящий мотор. А потом Герр осознал, что никакие из этих вариантов мотора не опираются на вторичное использование сухожилий, которое наблюдается в реальном лодыжечном суставе. Может быть, следовало добавить больше пружин, которые на сей раз действовали бы параллельно мотору?

И догадка оказалась верной. Дополнительные пружины снижали ту силу, которую должен был развивать мотор, в подражание тому, как икроножная мышца использует ахиллесово сухожилие, получая возможность вырабатывать энергию, не сокращаясь. Чтобы проверить новую систему, Герр сам надел переделанную модель-прототип и начал ковылять по специальной дорожке, на которой эти протезы испытывались у него в лаборатории. С каждым шагом улыбка на его лице становилась всё шире. Герр ускорил движение, стал шагать всё быстрее и быстрее. К тому времени, когда он объявил, что с этой искусственной лодыжкой чувствует себя «точно так же, как если бы шел на нормальной», его ассистенты уже бурно выражали свою радость.

В полной мере задействуя эту перестроенную паутину пружин, лаборатория вскоре сумела удвоить энергию, поставляемую аккумулятором моторчикам, установленным в протезах. Сегодня при ходьбе моторчик, находящийся в задней части каждой искусственной ступни Герра, постепенно насыщает энергией систему пружин, расположенных внутри стопы. Часть этой энергии высвобождается, когда он просто отталкивается ногой от земли в процессе обычной ходьбы. Если же он поднимается по склону или ускоряет шаг, мотор и пружины выделяют больше энергии – столько, сколько необходимо в изменившейся ситуации.

«Именно так работает наше тело», – поясняет Герр.

Работая в лаборатории, он часто надевает кислородную маску, прицепляет протезы и затем поднимается на тренажер, чтобы проверить очередные усовершенствования. Он может не только отслеживать перемещения различных частей своего тела с помощью системы Vicon, но и присоединять электроды к различным мышцам тела, чтобы определять электрический потенциал, возникающий в мышечных клетках, и измерять уровни мышечной активизации: этот метод называется электромиографией (ЭМГ). В пол вмонтированы чувствительные к нагрузке пластины (длиной 2 фута [0,6 м] и шириной 4 фута [1,2 м]), точно фиксирующие силу, с которой человек давит на поверхность, когда он ходит, танцует или бежит (поверхностную реактивную силу).

11

Британский ученый Генри Беннет-Кларк в конце 60-х первым подробно охарактеризовал необычайную прыгучесть этого крошечного насекомого. Вместе с коллегой он помещал подопытных блох в миниатюрную ячейку, окруженную множеством тепловых ламп, провоцирующих насекомое на прыжок, и снабженную камерой, которая вела сверхбыструю (по тем временам) съемку. Методом проб и ошибок исследователи сумели запечатлеть 20 «пригодных для дальнейшей работы» прыжков. Для этого пришлось проанализировать десятки тысяч кадров-негативов, полученных при съемке пятисекундных опытов. Как выяснилось, примерно за одну десятую долю секунды до каждого прыжка блоха подбирает под себя задние ноги, пока ее верхняя часть не выпрямляется почти вертикально. Потом – примерно восемь сотых секунды неподвижности. Затем она выгибает назад остальные ноги, толкает свое туловище вверх и бросает себя в воздух. Даже при скорости съемки, позволяющей фиксировать движения каждую миллисекунду, насекомое отрывается от поверхности с такой «взрывной силой», что последующие движения ее ног происходят намного быстрее, чем может зафиксировать такая камера. Но Беннет-Кларк, измеряя длину получившихся на пленке размытых полос, все-таки сумел прикинуть, что при этом блоха придает себе такое огромное ускорение, которое потребовало бы применения силы, примерно в 100 раз превышающей ту, которую могла бы развить мышца за столь краткий промежуток времени.