Страница 5 из 9
Именно благодаря этим случайным ошибкам копирования любой человек генетически уникален. Каждый новорожденный имеет около 60 новых мутаций в ДНК[27]. Подавляющее большинство их не оказывает заметного влияния на производимые белки. Но некоторые мутации воздействуют на природу белка и – в конечном счете – сказываются на фенотипе ребенка. Очень редко мутировавший ген становится улучшенной версией исходного. Но если это случается, то благодаря естественному отбору он может шире распространиться в последующих поколениях. Например, несколько тысяч лет назад некоторые люди рождались с нуклеотидом A в гене SLC24A5, в rs1426654, который был результатом неудачного копирования более распространенного G[28]. А-аллель способствует появлению кожи более светлого оттенка. Люди с А-аллелью, жившие в северных широтах, могли поглощать больше солнечного света, что позволяло им синтезировать больше витамина D. Это давало преимущества в тех местах, где прямой солнечный свет редкость, поэтому потомство индивидов с этим полиморфизмом выживало с большей вероятностью. G-аллель лучше подходила для широт, где избыток солнечного света может привести к проблемам со здоровьем. Поэтому там G-аллель стала более распространенной.
У каждой мутации своя цена. Если она слишком высока, мутации становятся менее распространенными в будущих поколениях, поскольку люди с такими генетическими ошибками реже выживают и дают потомство.
Перевод ДНК в белки дополнительно осложняется эпигенетическими механизмами. Эпигенетика изучает молекулярные механизмы, в результате которых белки могут быть синтезированы в обход «инструкций», содержащихся в последовательности ДНК. Примечательно, что спусковым механизмом для этих молекулярных процессов могут стать опыт и окружающая среда. Наиболее хорошо изучен такой эпигенетический механизм, как метилирование ДНК. Метильная группа (молекула, состоящая из одного атома углерода и трех атомов водорода) связывается непосредственно с нуклеотидами самой ДНК и контролирует, как часто будет происходить экспрессия того или иного гена. Невероятно, но эти метильные группы могут передаваться потомству. Они могут быть скопированы в процессе мейоза и унаследованы следующим поколением. Следовательно, жизненный опыт влияет не только на нас, но и на наших детей.
Неожиданный пример этого недавно обнаружили в эксперименте с мышами. Исследователи научили группу этих животных бояться запаха ацетофенона, похожего на аромат цветущей вишни. Мыши с появлением запаха получали небольшой разряд тока[29]. Вскоре они стали испытывать страх, едва учуяв ацетофенон. Эти мыши дали потомство. И их дети проявляли ту же самую реакцию на запах цветущей вишни. Следующее за ними поколение продолжало демонстрировать этот страх. При вскрытии обнаружилось, что рецепторы, отвечающие за реакцию на этот запах, в мозге подопытных мышей увеличены. Более того, при исследовании ДНК спермы этих мышей выявились различные паттерны метилирования ДНК, отсутствующие у других. Чтобы исключить возможность того, что мыши переняли страх у своих родителей, исследователи взяли сперму у самцов, которых научили бояться запаха цветущей вишни, и искусственно осеменили самок из другой лаборатории. В результате вскрытия мозга их потомков ученые обнаружили такие же увеличенные рецепторы, отвечающие за восприятие этого запаха. Специфический страх, приобретенный в одном поколении, передался потомству, но не через саму последовательность ДНК, а через паттерны метилирования, которые влияли на экспрессию гена. Другими словами, опыт определенной группы мышей привел к наследуемым изменениям. Нужно узнать гораздо больше об эпигенетическом наследовании, прежде чем мы сможем сделать обоснованные выводы, но эти данные сами по себе очень интересны.
От генотипа к фенотипу
Применительно к нашей жизни имеют особое значение именно фенотипы, которые характеризуют наши тела и поведение. Быстрые газели с большей вероятностью могут убежать от хищников, чем медленные. Высокий горошек способен улавливать больше солнечного света, чем низкорослый. Дети с синдромом дефицита внимания чаще стараются привлечь к себе внимание учителя в классе. Генотипы формируют все это. Но определить, как происходит «перевод» генотипов в фенотипы, не так просто.
Отец поведенческой генетики сэр Фрэнсис Гальтон столкнулся с этой проблемой в 1869 году. Тогда им овладела идея, что гениальность затрагивает всех членов семьи. Неудивительно, что у Гальтона возникло это прозрение. Возможно, это произошло во время рождественского ужина, на котором собралась вся семья ученого, включая его гениального троюродного брата Чарлза Дарвина и их выдающегося дедушку Эразма Дарвина. Возможно, концентрация интеллектуалов среди Дарвиных-Гальтонов была такой высокой из-за того, что дедушка Эразм обеспечил детям и внукам прекрасную образовательную среду, способствовавшую развитию их способностей. Но Гальтон был убежден в другом. А именно в том, что в основе гениальности лежит некая биологическая сущность. У ученого возникла блестящая идея доказать это на примере близнецов. Гальтон понимал, что существует два разных типа близнецов. Одни похожи друг на друга не больше, чем обычные братья и сестры. Другие практически неразличимы «из-за двух ядрышек в одной яйцеклетке». Он отправил письма 35 парам однояйцевых близнецов и 20 парам разнояйцевых близнецов, чтобы найти свидетельства каких-либо общих черт в их поведении. Выяснилось, что у разнояйцевых близнецов между собой не больше сходства, чем у обычных братьев и сестер, близких по возрасту. Со второй группой опрашиваемых результат оказался полностью противоположным. Сходство многих пар однояйцевых близнецов ошеломляло. У одних одновременно заболел один и тот же зуб, который обоим пришлось вырвать. Другие в 20 лет столкнулись с одной и той же необычной проблемой – не могли быстро спускаться по лестнице. Еще разные пары близнецов рассказали о том, что имели похожие мечты в одно и то же время, покупали друг другу одинаковые подарки и устраивались на аналогичные должности. Степень сходства однояйцевых близнецов была поразительной. И это говорило о невероятно сильном влиянии генов. Гальтон утверждал: «Опасаюсь лишь, что мои открытия, кажется, доказывают слишком многое и могут быть поставлены под сомнение, так как противоречат утверждению о необходимости воспитания»[30].
Интересные результаты, полученные Гальтоном, продемонстрировали, что знание степени биологического родства между людьми позволяет определить, в какой мере тот или иной признак является наследуемым. Иными словами, гены играют важную роль в объяснении того, почему один индивид отличается от другого. Открытия Гальтона привели к появлению поведенческой генетики. Двумя наиболее распространенными методами изучения наследуемости признака являются сравнение однояйцевых и разнояйцевых близнецов и сопоставление усыновленных и биологических детей. У однояйцевых близнецов 100 % генетических вариаций идентичны, тогда как у разнояйцевых – только 50 %. Поэтому, когда мы видим, что первые больше похожи друг на друга по какому-то признаку, чем вторые, это можно считать доказательством наследуемости данной черты. Аналогичным образом, если дети больше похожи на своих биологических отца и мать (50 %-ное совпадение генов) по определенному признаку, чем на приемных родителей (генетическое сходство стремится к 0 %), то мы опять же убеждаемся в наследуемости этой характеристики.
Что именно означает выражение «признак наследуется»? Нельзя сказать, что это интуитивно понятная концепция, поэтому давайте разберем ее немного подробнее. Рост – это наследуемая черта. Исследования с близнецами и усыновленными детьми показали, что вероятность наследуемости роста достигает 80–90 %[31]. Так что же имеется в виду? Вопреки распространенному мнению, речь идет не о шансах передачи признака напрямую от родителей. Таким образом, это не означает, что 80–90 % вашего роста вы унаследовали у родителей, в то время как оставшиеся 10–20 % – результат вашего опыта. Вернее будет сказать, что наследуемость относится к тому, какая доля изменчивости признака в данной выборке обусловлена генетикой. Например, наследуемость роста с вероятностью 80 % означает, что каждый участник исследования в рамках определенной группы, который обладает ростом выше среднего, получил такой признак на 80 % из-за генетических причин. Остальные 20 % роста обусловлены жизненным опытом (будь то перинатальное или постнатальное развитие). Важно отметить, что оценки наследуемости всегда относятся к определенной выборке участников исследования и ничего не говорят о людях, живущих в других условиях. О попытках сравнения одного признака у представителей разных групп и последствиях этого мы поговорим позднее.
27
http://www.nature.com/nature/journal/v488/n7412/full/488467a.html?WT.ec_id=NATURE-20120823.
28
Lamason, R. L., Mohideen, M. A., Mest, J. R., Wong, A. C., Norton, H. L., Aros, M. C., et al. (2005). SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science, 310, 1782–1786.
29
Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17, 89–96.
30
Galton, F. (1875). The history of twins, as a criterion of the relative powers of nature and nurture. Frasers Magazine, 12, 566–576.
31
Visscher, P. M. (2008). Sizing up human height variation. Nature Genetics, 40, 489–490.