Страница 5 из 6
Можно было бы ожидать, что любая оценка, сделанная в то время, теперь должна безнадежно устареть. Однако в действительности все наоборот. Что касается чистой вычислительной теории (теории генерации элементов любой вычислимой функции), основы, заложенные Уильямом Черчем, Аланом Тьюрингом и, в известной степени, самим фон Нейманом, оказались не только в высшей степени прочными, но и весьма полезными в решении широкого круга проблем.
Что касается компьютерных технологий, то все современные машины, которые теперь стоят в каждом офисе и в каждом втором доме в Америке, построены на так называемой архитектуре фон Неймана. Все они – примеры функциональной организации, предложенной и исследованной фон Нейманом. В основе этой организации лежит последовательная «программа», которая хранится в модифицируемой «памяти» машины и определяет природу и порядок основных шагов, выполняемых «центральным процессором» в ходе вычислений. В настоящей работе фон Нейман предлагает краткое, но четкое обоснование такой организации, хотя он говорит о «коде», тогда как сейчас мы говорим о «программах»; он говорит о «полных кодах» и «сокращенных кодах», а мы – о «программах на машинном языке» и «языках программирования высокого уровня». Но изменились только слова и частота тактовых импульсов. Джон фон Нейман узнал бы свою архитектуру в любой машине, существующей сегодня, – от органайзеров Palm Pilot,[5] играющих в покер, до суперкомпьютеров, моделирующих процессы образования галактик.
Ситуация, сложившаяся вокруг эмпирической нейронауки, сложнее, но вместе с тем гораздо интереснее. Прежде всего необходимо сказать, что в некоторых нейронауках (нейроанатомии, нейрофизиологии, возрастной нейробиологии и когнитивной нейробиологии) достигнут значительный прогресс. И здесь кропотливые исследования длиной в полвека породили совершенно новую науку. Благодаря новейшим экспериментальным методам (таким, как электронная и конфокальная микроскопия, фиксация потенциала, электро- и магнитоэнцефалография, компьютерная томография, позитронно-эмиссионная томография и магнитно-резонансная томография) сегодня мы имеем гораздо лучшее представление о волокнистой микроструктуре мозга, электрохимическом поведении его микроскопических частей и общих механизмах его функционирования при различных видах познавательной деятельности. Несмотря на то что мозг по-прежнему хранит много тайн, он уже не является «черным ящиком», каковым представлялся когда-то.
Как ни странно, начиная с 1950-х годов и вплоть до настоящего времени эти две родственные науки, одна из которых посвящена изучению искусственных, а другая – естественных когнитивных процессов, развивались в отрыве друг от друга. Люди, получавшие ученые степени в области информатики, как правило, мало знали о биологическом мозге (а многие – вообще ничего). Поскольку подавляющее большинство исследований в области информатики были ориентированы на написание программ, разработку новых языков или усовершенствование микросхем, глубоких познаний в сфере эмпирических нейронаук не требовалось. Аналогичным образом специалисты по нейронаукам практически ничего не знали о теории машинных вычислений, теории автоматов, формальной логике, двоичной арифметике или электронике транзисторов. Бо́льшую часть своего рабочего времени эти ученые тратили на окрашивание образцов мозговой ткани для последующего микроскопического исследования или на вживление в мозг микроэлектродов для анализа электрического поведения нейронов во время выполнения различного рода познавательных задач. Если они и прибегали к помощи машин, то использовали их в качестве инструмента для упорядочивания результатов экспериментов – то есть так, как используют вольтметр, калькулятор или картотечный шкаф.
Хотя в каждой из этих наук еще предстоит открыть много нового, ни одна не внесла сколь-нибудь существенного вклада в изучение предмета другой. Несмотря на кажущееся совпадение – исследование когнитивных и вычислительных процессов, – они развивались параллельно; каждая добилась потрясающих успехов самостоятельно, без всякой помощи со стороны «сестры». Но почему?
Пожалуй, самый частый ответ, который можно услышать, заключается в том, что по своей физической организации и вычислительной стратегии биологический мозг очень отличается от архитектуры фон Неймана, используемой в стандартных вычислительных машинах. В течение почти пятидесяти лет две сестринские науки фактически занимались изучением принципиально разных предметов. А потому и неудивительно, что они развивались в значительной независимости друг от друга.
Вышеупомянутый ответ по-прежнему остается спорным и в дальнейшем вполне может оказаться ошибочным. Однако он лежит в основе текущих дискуссий о том, каким именно образом биологический мозг творит свои многочисленные познавательные чудеса и как лучше всего подходить к конструированию различных форм искусственного интеллекта. Должны ли мы проигнорировать очевидные ограничения биологических систем (ограничения, в основном касающиеся скорости и надежности) и сосредоточиться на ослепительном потенциале электронных систем – систем, которые даже с архитектурой фон Неймана могут выполнять или симулировать любые вычислительные операции? Или вместо этого лучше имитировать организацию, свойственную мозгу насекомых, рыб, птиц и млекопитающих? Если да, то что это за организация? Чем она отличается от того, что происходит в наших искусственных машинах?
На эти вопросы Джон фон Нейман предлагает прозорливый, аргументированный и явно нетрадиционный ответ. Первую половину своей книги он посвящает классическим концепциям (которые сам же и сформулировал), а обращаясь к мозгу, заключает, что «его функционирование является на первый взгляд цифровым». Этот вывод в свою очередь представляет собой на первый взгляд прокрустово ложе – и фон Нейман признает сей факт немедленно.
Первая проблема, которую он отмечает, состоит в том, что характер связей между нейронами отличается от привычной конфигурации «две линии внутрь, одна наружу», присущей как классическим вентилям И, так и вентилям ИЛИ. Хотя каждая клетка, как правило, имеет только один выходной аксон, как того требует классическая схема, она получает более ста (точнее, более нескольких тысяч) входных сигналов от множества других нейронов. Несмотря на то что данный факт не является решающим – существуют, например, системы многозначной логики, – он заставляет задуматься.
Интрига закручивается, когда фон Нейман проводит поэтапное сравнение фундаментальных размеров «основных активных органов» мозга (предположительно нейронов) и «основных активных органов» вычислительной машины (различных логических вентилей). В пространственном отношении, утверждает он, нейроны имеют преимущество, так как в 102 раз меньше своих электронных аналогов. (Оценка в то время была совершенно точной, однако с появлением такой технологии изготовления микросхем, как фотолитография, это преимущество исчезло – по крайней мере в случаях, когда речь идет о двумерных слоях.)
С другой стороны, у нервных клеток есть один существенный недостаток – скорость выполнения операций. Нейроны, пишет фон Нейман, в 105 раз медленнее электронных трубок или транзисторов, т. е. для совершения основной логической операции им требуется в сто тысяч раз больше времени. И здесь фон Нейман пугающе точен. Более того, он переоценивает возможности нейрона. Если предположить, что «тактовая частота» у нейрона не превышает 102 Гц, и сравнить его с обычной настольной машиной последнего поколения с тактовой частотой 1000 МГц (т. е. 109 основных операций в секунду), получаем, что разница в быстродействии составляет не 105, а 107 раз. Вывод неизбежен. Если мозг – это цифровая вычислительная машина с архитектурой фон Неймана, то он – настоящая черепаха по сравнению с современными компьютерами.
Кроме того, точность, с которой биологический мозг может представлять любую переменную, также на много порядков ниже точности, доступной цифровой машине. Вычислительные машины, отмечает фон Нейман, легко манипулируют восемью, десятью или двенадцатью десятичными знаками, в то время как точность представления числа в нервной клетке – т. е. частота импульсов, которые она отправляет вниз по аксону, – ограничена двумя десятичными знаками (а именно, плюс или минус 1 процент от максимальной частоты около 100 Гц). Это настораживает, поскольку в ходе любых вычислений, включающих большое количество шагов, маленькие ошибки на ранних этапах накапливаются и превращаются в большие ошибки на завершающих этапах. Хуже того, добавляет фон Нейман, во многих типах вычислений даже незначительные ошибки на ранних этапах экспоненциально усиливаются на последующих этапах, что неизбежно ведет к высшей степени неточным конечным результатам. Таким образом, если мозг – цифровая вычислительная машина, представляющая любое число с точностью до двух десятичных знаков, то он – вычислительный болван.
5
Palm – семейство карманных компьютеров и коммуникаторов (смартфонов), работающих под управлением операционной системы Palm OS, а также webOS. Производились компанией Palm Computing (подразделение U. S. Robotics, затем 3Com и после этого – Palm, Inc.), а также другими фирмами. В 2010 году, после покупки Palm компанией Hewlett Packard, смартфоны выпускались уже под маркой этого производителя.