Страница 16 из 19
Задолго до того, как Барбару Стоддард Беркс попросили пересмотреть подходы к изучению генетики, научный руководитель Шеннона в Колд-Спринг-Харбор сочиняла тексты к детским книжкам в картинках: «Тысячи звезд сверкали в небесах, и отец показал мне созвездие Южный Крест, которое состоит из четырех очень ярких звезд, похожих по форме на бумажного змея. Взрослые люди называют эту фигуру крестом, и некоторые очень гордятся тем фактом, что смогли увидеть его, потому что для этого им приходится отправляться в дальние путешествия».
Немногие ученые бывали в тех краях, куда ездила Беркс. Еще ребенком она путешествовала с родителями – они оба были преподавателями – и побывала в отдаленных районах филиппинских гор. Когда она вернулась в Америку, то приняла участие в создании книги в картинках под названием «Филиппинское путешествие Барбары», на писан ной ее матерью от лица маленькой Барбары. Она добилась самых высоких званий в американской науке, причем в те времена, когда женщинам все еще не доверяли заниматься точными науками. Будучи старше Шеннона на четырнадцать лет, Барбара также наиболее продуктивно проявила себя до тридцати лет. Но в отличие от Шеннона, эта женщина научилась справляться с коллегами, которые порицали ее за излишнюю агрессивность в отстаивании своих выводов, делая это с той же уверенностью, что и они.
Беркс путешествовала, занимаясь своими исследованиями, и вносила статистическую строгость в сферу изучения генетики. Бо́льшая часть ее работы была посвящена извечной проблеме соотношения природы и воспитания, в частности в том, что касается интеллекта. Наибольшие споры вызывали те ее исследования, где она пыталась разделить влияние генетики и окружения на IQ. Так, к примеру, тема «природа без воспитания» означала изучение поведения близнецов, воспитываемых раздельно, а «воспитание без природы» было сравнительным исследованием интеллекта приемных детей и их приемных родителей. В возрасте двадцати четырех лет на основании проведенного ею изучения приемных детей она сделала спорный вывод о том, что уровень интеллекта примерно на 75–80 процентов является наследственным. И хотя Беркс не была отягощена грузом знаний из области евгеники, но она, как и Буш, приехала в Колд-Спринг-Харбор ради хранившегося здесь миллиона каталожных карточек. И в последние годы существования этого учреждения ей удалось обнародовать свой надежный метод отфильтровывать ненужный мусор, собранный в папках, чтобы добраться до пригодной информации.
Но эта вера в собственную оригинальность подвела его: в какой-то момент он представил в качестве нового открытия теорему, которая была уже известна биологам на протяжении двух десятилетий.
Другими словами, Беркс была экспертом в данной области и при этом обладала выдающимся интеллектом. Именно поэтому ее слова прозвучали весомо, когда, прочитав часть предварительной работы Шеннона по генетике, она написала в МТИ, что «Шеннон, конечно же, одаренный человек, возможно, в самой высшей степени». Обращаясь к Бушу, она с ироничным сочувствием попеняла на то, что этому молодому человеку, похоже, почти нечему учиться у них: «Быть руководителем такого юноши, как Шеннон, довольно трудно, не правда ли?» И все же Шеннону пришлось изучать генетику с самых азов. Аллели, хромосомы, гетерозиготность – когда он впервые столкнулся с этим, то признался Бушу, что даже не понимает таких слов. Начав со скудного старта, ему удалось (в целом) овладеть новой наукой и подготовить для публикации научную работу менее чем за год.
«Алгебра теоретической генетики» действительно имела все признаки работы талантливого новичка, заброшенного на чужую территорию – хорошо это или плохо. В своей библиографии Шеннон потрудился сослаться лишь на семь других научных работ, объяснив это тем, что его метод генетической математики был в буквальном смысле беспрецедентным: «Ни одна работа не выполнялась прежде в подобном соответствии со специфическими алгебраическими линиями, как в этой диссертации». Но эта вера в собственную оригинальность подвела его: в какой-то момент он представил в качестве нового открытия теорему, которая была уже известна биологам на протяжении двух десятилетий. Один курс по генетике или несколько дополнительных недель, проведенных в библиотеке, могли помочь ему избежать этого повторного открытия, сделанного человеком, который начал изучать генетику с нуля. Потом он признался Бушу: «Хотя я довольно внимательно просматривал учебники по генетике, я не решился ознакомиться с периодической литературой». Однако при этом Шеннон предложил совершенно новый взгляд на старые проблемы. И там, где его мысль действительно была оригинальной, это происходило почти неосознанно. Подобно генетику Джозефу Конраду, он мог достичь творческих высот в освоенном им языке, потому что в юношеские годы не успел заучить известные клише.
Генетическая алгебра Шеннона была, по сути, попыткой повторно воссоздать для клеток то, что он смог создать для электрических схем. До Шеннона электрические схемы можно было изобразить на доске, но не в виде уравнений. Конечно, гораздо неудобнее манипулировать диаграммой, чем уравнением. Но никому еще не удавалось даже начать применять математические правила к чертежу. Все в работе Шеннона было построено на понимании того, что электрические схемы были чисто символическими. А что если гены тоже чисто символичны? Подобно тому, как булева алгебра помогла автоматизировать ментальные усилия вычислительных машин, алгебра генетики могла помочь генетикам предсказывать ход эволюции. Трюк, как и прежде, заключался в том, чтобы абстрагироваться оттого, что было перед глазами. Забудьте о сотне переключателей в коробке, забудьте о том, что 4598 означает игру в шахматы.
«Значительная часть силы и простоты любой математической теории, – писал Шеннон, – зависит от использования компактного и наглядного символического изображения, которое, тем не менее, всесторонне описывает изучаемые концепции». На самом деле, эта мысль была уже прочно вбита в головы математиков, которые знали, к примеру, что Ньютон и Лейбниц открыли дифференциальное исчисление почти одновременно, но система символов Лейбница победила как более наглядная. Но какой должна быть наглядная система символизации целой популяции людей, выраженная в генах?
Как понял Шеннон, изучив эту область, «гены заключены в палочковидных телах, именуемых хромосомами; большое количество генов лежат бок о бок по всей длине хромосомы». (Сами хромосомы состоят из молекул ДНК, которые кодируют гены четырехбуквенными сочетаниями, хотя об этом никто еще не знал.)
У большинства видов, состоящих из более чем одной клетки, особи имеют определенное количество парных хромосом (у человека их двадцать три пары). У тех видов, которые размножаются половым путем, одна хромосома передается от матери, а одна – от отца. Чтобы было понятнее, Шеннон предложил рассматривать организм всего с двумя парами хромосом и шестнадцатью генами. Свой генетический код он представил следующим образом:
A1B1C3D5 E4F1G6H1
A3B1C4D3 E4F2G2H2
Левая верхняя комбинация A1В1С3D5 – это хромосома от одного родителя, а левая нижняя комбинация А3В1С4D3 – хромосома от второго родителя. Вместе они образуют одну хромосомную пару. Колонка из A1 и А3 (буквы выделены жирным шрифтом) составляет позицию генов. Если брать их по отдельности, то A1 – это аллель, или ген от одного родителя с одной наследуемой чертой. Ограниченное количество аллелей возможно в любой позиции генов, а взаимодействие аллелей от матери и отца определяет те качества, которые наследует их потомство. Шеннон перевел в символы возможные аллели с помощью чисел в нижнем индексе. А1 и А3 – это различные проявления одной черты (к примеру, цвета волос – единица обозначает каштановый, а двойка блондин), а качество, которое превалирует, зависит от того, какой ген доминирует.