Добавить в цитаты Настройки чтения

Страница 11 из 20



Так как же старая ядовитая атмосфера уступила место пригодному для жизни и дыхания воздуху, который окружает нас теперь? Это произошло в результате действия нескольких факторов, но в значительной степени благодаря появлению важного для истории планеты газа – азота.

Глава вторая

Дьявол в воздухе

Азот (N2) в настоящее время составляет 78 % воздуха (780 000 ppm); при каждом вдохе мы поглощаем девять секстиллионов молекул азота

Аммиак (NH3) сейчас содержится в воздухе в концентрации 0,00001 ppm; при каждом вдохе мы поглощаем 100 млрд молекул

На протяжении нескольких сотен миллионов лет после рождения Земля оставалась весьма негостеприимной планетой. Даже если бы вам удалось найти место, где не поджаривало пятки, дышать извергавшимися из жерл вулканов газами было невозможно. Но те самые вулканы, которые в краткосрочном плане создали вокруг себя ядовитую среду, в конечном счете насытили воздух азотсодержащими газами.

Тело человека на 93 % состоит из трех элементов: кислорода, водорода и углерода, – и примерно то же самое можно сказать обо всех остальных живых существах. Кроме того, клеткам нужны десятки других элементов, включая такие необычные, как молибден. Бо́льшую часть этих элементов животные и растения добывают из окружающей среды.

Азот представляет собой важное исключение. Это четвертый по количеству элемент в составе человеческого тела: на его долю приходится около 3 % массы тела. Кроме того, это самый распространенный элемент в составе воздуха: четыре из пяти вдыхаемых нами молекул – это молекулы азота. Поэтому, казалось бы, проще простого включить азот в состав наших клеток. Однако это далеко не так. Несмотря на изобилие азота в атмосфере, многие живые существа вынуждены драться даже за крохи этого элемента. Дело в том, что клетки большинства живых существ, включая человека, не усваивают газообразный азот. Сначала его нужно перевести в другую форму. Но на протяжении первых миллиардов лет в истории Земли этим умением могли похвастаться лишь некоторые весьма специфические микробы.

Наконец, в начале XX в. Homo sapiens стал первым организмом немикробного происхождения, научившимся связывать азот. Благодарить за это следует двух человек: оба были немцами, оба работали в химической промышленности. Оба были признаны национальными героями и награждены Нобелевской премией. А потом обоих заклеймили как военных преступников. И хотя многие их ненавидели, эти два человека придумали способ включать элемент под номером 7 из воздуха в наши тела. Историю воздуха невозможно рассказать, не рассказав о химическом таланте Фрица Габера и Карла Боша.

Химик Фриц Габер – одна из самых противоречивых фигур в истории науки

Эта история начиналась трудно. Фриц Габер родился в Германии в 1868 г. в еврейской семье из среднего класса. Несмотря на очевидный талант ученого, в молодости он работал в промышленности, причем занимался самыми разными вещами – от производства красителей и спирта до получения целлюлозы и патоки – и нигде особенно не выделялся. В 1905 г. одна австрийская компания попросила Габера (на тот момент уже лысеющего джентльмена с усиками и в пенсне) найти способ производства аммиака (NH3).



Задача казалась очевидной. В воздухе содержится много газообразного азота (N2), а водород (H2) можно получить за счет расщепления молекулы воды под действием электричества. Таким образом, для получения аммиака, казалось бы, нужно просто смешать и нагреть два газа: N2 + 3H2 → 2NH3. Voilà. Но оказалось, что это дело по сложности не уступает клубку задач из «Уловки-22». Для расщепления молекулы азота на атомы требуется затратить невероятно большое количество тепла, но от нагревания расщепляется продукт реакции – неустойчивая молекула аммиака. Габер несколько месяцев ходил кругами, пока наконец не написал в отчете, что получение аммиака из азота и водорода – бессмысленный процесс.[13]

Отчет сгинул в небытие – отрицательные результаты не вознаграждаются, – возможно, не без участия известного химика Вальтера Нернста. У Нернста уже было все, чего добивался Габер. Он работал в Берлине – центре всей жизни Германии – и заработал состояние на изобретении электрической лампочки нового типа. Но главное, Нернст приобрел известность в научных кругах, открыв новый закон природы – третье начало термодинамики. Работы Нернста в области термодинамики позволили химикам сделать нечто ранее совершенно невозможное – исследовать любую реакцию (например, превращение азота в аммиак) и оценить выход при разных значениях температуры и давления. Это было значительным шагом вперед, поскольку позволяло действовать не вслепую, а предсказывать оптимальные условия для протекания реакции.

Теперь химикам нужно было подтвердить эти предсказания в лабораторных условиях, и тут-то и возник конфликт. Когда Нернст изучил отчет Габера, он обнаружил, что выход аммиака в исследованной реакции был слишком высоким – на 50 % выше предсказанной им величины.

От этого заявления Габеру стало плохо. Он вообще был легковозбудимым человеком, у него было слабое сердце и случались нервные срывы. А теперь Нернст мог разрушить то единственное, что ему удалось заработать в жизни, – репутацию хорошего экспериментатора. Габер тщательно переделал эксперименты и опубликовал новые данные, которые несколько лучше согласовывались с предсказаниями Нернста. Но цифры все равно оставались высокими, и на конференции в мае 1907 г. Нернст перед всеми отчитал своего более молодого коллегу.

Честно говоря, это был довольно бессмысленный спор. Оба ученых соглашались в том, что промышленное получение аммиака из азота невозможно, и расходились лишь в оценке степени невозможности. Однако Нернст не был великодушным человеком, а Габер, обладавший рыцарскими чертами, не мог стерпеть унижения. Вопреки всему, что он узнал до сих пор, он решил доказать, что получить аммиак из газообразного азота все-таки можно. В случае успеха он не только утер бы Нернсту толстый нос, но и смог бы получить патент и разбогатеть. Но важнее всего, реакция связывания азота сделала бы Габера национальным героем Германии, поскольку давала стране возможность получить то, чего ей не хватало для мирового господства, – надежный источник удобрений.

Аммиак – ключ к получению сельскохозяйственных удобрений. И дело не только в том, что в аммиаке содержится азот, а в том, что в аммиаке азот содержится в той форме, в которой его могут использовать растения. Чтобы понять разницу, нужно знать кое-что о химических связях, удерживающих атомы в молекулах. В большинстве молекул атомы связаны между собой простыми (одинарными, X – Y) или двойными (X = Y) связями. Однако в образовании молекулы газообразного азота задействована тройная связь (N ≡ N) – одна из самых прочных и трудно разрушаемых связей в природе. Например, разрушение всех тройных связей всего в одной унции азота приведет к высвобождению энергии, которой хватит, чтобы приподнять на 40 см гантель массой 500 т. Именно прочность этой связи объясняет преобладание азота в современной атмосфере. Как отмечалось в предыдущей главе, в вулканических газах азот присутствует лишь в следовых количествах, значительно уступая по содержанию другим газам. Однако в то время как большинство вулканических газов со временем исчезает (они либо взаимодействуют с другими веществами, либо расщепляются под действием ультрафиолетового излучения), тройная связь между атомами азота препятствует разложению молекулы. Поэтому азот постепенно накапливается (кроме того, некоторое количество N[14]2 образуется при расщеплении аммиака из вулканических выбросов). Другими словами, азот занял доминирующее положение в атмосфере по той причине, что пережил все остальные соединения, выделившиеся при извержениях вулканов*.

13

«Уловка-22» (Catch-22) – антивоенный и антибюрократический роман американского писателя Джозефа Хеллера (1961).

14

28,3 г.