Страница 7 из 8
Но здесь возникает совершенно естественный вопрос: будет ли вместе с содержанием мышечного гликогена восстановлено и качество спортивного выступления? В анализе европейского экспертного сообщества [НКП] было констатировано, что соблюдение в течение периода восстановления углеводной диеты помогает сохранить выносливость при последующих нагрузках. Например, увеличивая потребление углеводов от 5 г/кг массы тела в обычном рационе до 10 г/кг в течение 24 ч восстановительного периода, бегуны на длинные дистанции смогли повторить результат 90-минутного забега, совершенного за сутки до этого. С другой стороны, когда они потребляли стандартное количество углеводов вместе с дополнительными источниками энергии, т. е. жирами, чтобы таким образом приравнять сумму полученной энергии к той, которая наблюдается при углеводсодержащей восстановительной диете, спортсмены оказывались неспособными к повторению результатов 90-минутного забега.
Таким образом, исследователи пришли к выводу, что именно дополнительное количество углеводов в восстановительной диете, а не получение энергии вместе с жирами, является фактором, определяющим скорейшее обретение прежней физической формы.
Категория В – углеводно-электролитные растворы (УЭР/CES) или, как их нередко называют, спортивные напитки.
Мотивация к их использованию – восполнение дефицита энергии, жидкости и минеральных веществ во время и непосредственно после нагрузок для предупреждения утомления и оптимизации раннего постнагрузочного восстановления. По мнению спортивных физиологов, именно истощение запасов гликогена и обезвоживание являются наиболее вероятными физиологическими причинами физического утомления (McNaughton L.R. 2000 [37]; Mujika I., Burke L.M., 2010 [25]).
Водный баланс в условиях основного обмена (пребывание в состоянии покоя при комфортной температуре и влажности) представлен в таблице 6.
Таблица 6
Самой вариабельной величиной в графе «Расход жидкости» является потоотделение. Так, в условиях основного обмена с потом теряется всего лишь 4 мл за час, что составляет менее 5 % от общей потери влаги организмом за этот временной интервал. К усилению потоотделения ведет прежде всего интенсификация физической активности; влияют также, но в существенно меньшей степени, повышение температуры воздуха и снижение его влажности. Даже умеренные физические нагрузки, реализуемые в максимально комфортных условиях, увеличивают интенсивность выделения пота в десятки раз – до 1200 мл в час; при этом доля теряемой с потом влаги может возрасти до 90 %. Еще активнее усиливает потоотделение спорт с его чрезмерными нагрузками и зачастую неблагоприятными условиями внешней среды. Например, во время марафонских забегов в жаркую погоду бегуны могут терять с потом до 7 л жидкости.
В случае адекватного восполнения подобные потери практически безопасны, т. к., физиологически допустимая убыль жидкости с пóтом, по мнению экспертов ВОЗ, может доходить до 10 л в сутки! Но, если игнорировать подобные потери, рано или поздно развивается обезвоживание.
Обычно его клинические проявления возникают при снижении объема плазмы на 10 %, что ориентировочно соответствует потере массы тела за счет жидкости примерно на 2 %; тренированные спортсмены более устойчивы к потере влаги – симптоматика развивается при дефиците 3 % (Арселли Э., Канова Р., 2000 [38]). Потеря 7 % – это вероятный отказ от работы, а 10–12 % – риск развития жизнеугрожающих состояний.
Клиническая симптоматика обезвоживания, по данным итальянских авторов, отмечается у 58 % регулярно тренирующихся (Sponsiello N. et al. [39]). В исследовании, проведенном в 2016 г. совместно с В.А. Курашвили (ВНИИФК), а также Т.А. Яшиным (ЦСМ ФМБА России), нами было показано, что лабораторные признаки нарушения водно-солевого баланса выявляются у 73 % футболистов (Парастаев С.А. и соавт., 2017 [40]).
Характеристики УЭР определяются четкими требованиями, которые были определены по четырем модифицируемым в фиксированных диапазонах параметрам (приведено по SCN ES, 2001 [15]):
Итак, спортивные напитки должны включать не менее 2 углеводов, в суммарной концентрации не более 8 % (тенденция последних 5–6 лет – снижение до 4 %, что в большей степени приемлемо для любительского спорта). Осмоляльность, создаваемая, как известно, содержанием растворенных веществ, задается в интервале от 200 до 330 мОсм на л: менее 270 мОсм – гипотонические напитки, а интервал 270–300 – изотонические; осмотическое давление гипотонических составов обеспечивается в основном полимерами глюкозы, а изотонических – ионом натрия. Помимо натрия в состав напитков могут вводиться и иные минералы, а также различные витамины (свойства некоторых коммерческих напитков представлены в Приложении 2).
Но здесь, по-видимому, требуются определенные комментарии по терминологическим аспектам и понятийному аппарату.
Осмоляльность – молярное количество осмотически активных частиц на килограмм растворителя (мОсм/кг H2O); в качестве близкой ей характеристики рассматривается осмолярность – молярное количество осмотически активных частиц на литр раствора (мОсм/л).
Например, в норме величина осмоляльности крови колеблется от 286 до 296 мОсм/кг. При падении данного показателя ниже 286 мОсм/кг H2O говорят о гипоосмоляльности, и наоборот, при превышении 296 мОсм/кг – о гиперосмоляльности.
Осмоляльность определяется тремя составляющими: натрием, глюкозой и мочевиной, причем на долю натрия приходится около 50 % осмотического давления.
В клинической практике осмоляльность регистрируют с помощью прибора осмометра, а в случае его отсутствия – расчетным путем, но лишь при условии, что концентрация глюкозы и мочевины крови в пределах нормы: величину данного показателя можно приблизительно определить, умножив концентрацию натрия в плазме на 2.
Тоничность – компонент осмоляльности внеклеточной жидкости, обусловленный концентрацией растворенных веществ, плохо проникающих через клеточные мембраны (Na+, в отношении некоторых тканей – глюкоза). Обычно осмоляльность и тоничность меняются однонаправленно, поэтому гиперосмоляльность подразумевает и гипертоничность[11].
Различают: гипо-, изо- и гипертоничность. Под гипотоничностью понимают снижение осмоляльности плазмы ниже 250 мОсм/кг, изотоничность характеризуется нормальными величинами осмоляльности – 286–296 мОсм/кг, а при гипертоничности – осмоляльность плазмы выше 310; при повышении осмоляльности плазмы выше 320 мОсм/кг развивается гиперосмоляльная кома.
Осмоляльность (тоничность) жидкости в сосудистом, интерстициальном и клеточном бассейнах одинакова (закон изоосмоляльности). Повышение или снижение этого показателя в каком-либо из секторов сопровождается миграцией воды из соседнего пространства в сторону гиперосмоляльности с целью уравновесить осмотическое давление. Так, при повышении осмоляльности в сосудистом бассейне происходит перемещение воды из интерстициального пространства в кровоток, а при повышении осмоляльности в интерстициальном пространстве происходит миграция воды из клеток. Следует отметить, что последнее из указанных направлений перемещения жидкости сопровождается обезвоживанием клетки, ее сморщиванием. При обратном движении – из интерстиция в клетку – происходит ее набухание с возможным разрывом клеточной мембраны и утратой функции.
Возвращаясь к проблематике потребления жидкости для предотвращения обезвоживания при высокой двигательной активности, следует отметить, что, согласно современным воззрениям, пить надо при продолжительности нагрузок более 1 часа. Каждый литр израсходованной на потоотделение жидкости должен быть немедленно возмещен, но не полностью, а лишь частично, чтобы не создавать дополнительную нагрузку на кардио-васкулярную систему; оптимальная степень восполнения дефицита влаги – 40–80 % (большинство спортсменов высокого класса покрывают в ходе выполнения нагрузок 50–70 % потерянной жидкости (Sponsiello N. et al. [39]).
11
Компромиссное решение, применительно к категории углеводно-электролитных растворов, было предложено авторами Отчета Научного комитета по питанию (2001) [15]: определение «Изотонический раствор» относится к осмоляльности жидких сред организма – 297 мОсм/кг воды.