Добавить в цитаты Настройки чтения

Страница 21 из 22

Бекхед предположил, что количество энергии, извлекаемой нами из пищи, зависит от задачи, которую привыкла выполнять наша микробная фабрика. Если вегетарианец вдруг решит нарушить привычный пост и отведать жаркое из кабана, то, скорее всего, у него в кишечнике просто не окажется достаточного количества микробов, любящих аминокислоты, чтобы извлечь из мяса наибольшую пользу. Зато у заядлого мясоеда нужные микробы имеются в изрядном количестве, поэтому он усвоит из съеденного жаркого больше калорий, чем вегетарианец. То же относится и к прочим питательным веществам. У человека, потребляющего мало жирной пищи, окажется очень мало микробов, специализирующихся на жирах, и если он, против обыкновения, вдруг съест пончик или шоколад, то эта случайная пища пройдет по его толстой кишке практически незамеченной, то есть содержащиеся в ней лишние калории не будут усвоены организмом. А вот у того, кто привык каждый день баловать себя сдобной выпечкой, имеется большая популяция охочих до жира бактерий, которые с нетерпением ждут очередного пончика, чтобы разложить его на первоэлементы и заодно обеспечить лакомку солидной дозой калорий.

Бесспорно, количество калорий, которые мы усваиваем из пищи, имеет большое значение, однако дело не только в количестве энергии, которое добывают для нас наши микробы, но и – что гораздо важнее – в том, как именно они заставляют организм распорядиться этой энергией. Используем ли мы ее сразу для управления мышцами и внутренними органами? Или же запасаем впрок – на случай, если нечего будет есть? Какую из этих стратегий выбирает организм, зависит от наших генов. Но дело тут не в особых вариантах генов, унаследованных от родителей, а в том, какие именно гены «включаются» или «выключаются», какие будут «вызваны на работу», а какие до поры продолжат «отдыхать».

Наш организм сам «включает» и «выключает» гены, «вызывает» их на работу и «отправляет в отпуск», используя всевозможных химических посредников. Вот почему, например, клетки, из которых состоят наши глаза, выполняют совсем иные задачи, нежели клетки, образующие печень. А клетки мозга функционируют днем, пока мы заняты разной работой, совсем иначе, чем ночью, когда мы крепко спим. Однако наш организм – не единственный, кто распоряжается нашими генетическими данными. Микробы внутри нас тоже имеют право голоса и контролируют некоторые из наших генов, приспосабливая их под свои нужды.

Представители микрофлоры могут увеличить производство энергии, активизировав те гены, которые способствуют ее накоплению в наших жировых клетках. Почему бы и нет? Ведь микрофлора процветает благодаря тому, что живет внутри человека, который помогает ей благополучно пережить голодные времена. «Жирная микрофлора» подстегивает эти гены, заставляя организм запасать лишнюю энергию из пищи в виде жировых отложений. Как ни досадно это для тех, кто хочет сохранить желаемый вес, такие манипуляции с контролем над генами в целом выгодны нам: это помогает извлекать максимальную пользу из пищи и откладывать лишнюю энергию про запас, «на черный день». В прошлом, когда в жизни людей чередовались периоды сытости и голода, такие запасы нередко спасали им жизнь.

Таким образом, вопрос о «входящих калориях» касается не только продуктов, которые мы отправляем в рот. Необходимо учитывать, сколько энергии усваивается в кишечнике, в том числе с помощью микробов. Вопрос об «исходящих калориях» тоже очень сложен: он не исчерпывается тем, сколько энергии мы тратим на физическую активность. Нужно представлять себе, как именно наш организм распоряжается энергией: откладывает про запас или сразу сжигает. Один человек усваивает и запасает больше энергии, чем другой, в зависимости от поведения своих микробов, однако возникает новый вопрос: почему у людей, усваивающих больше энергии и запасающих больше жира, насыщение не наступает раньше? Если они уже усвоили достаточно калорий и запасли впрок нужный объем жира, почему они не останавливаются вовремя и продолжают есть?

Человеческим аппетитом управляет множество факторов – от непосредственного физического ощущения полного желудка до гормонов, которые сообщают мозгу, сколько энергии запасено в виде жира. Одним из таких гормонов является химическое вещество, о котором я уже упоминала, рассказывая о генетически тучных мышах, – лептин. Он вырабатывается непосредственно жировыми тканями, поэтому чем больше у нас жировых клеток, тем больше лептина поступает в кровь. Это отлично устроенная система: она автоматически информирует мозг о том, что мы сыты, как только мы накапливаем нормальное, здоровое количество жира, после чего аппетит угасает: ведь мы уже насытились.





Так почему же люди не теряют интереса к еде, когда начинают толстеть? В 1990-х годах, когда ученые открыли лептин – благодаря тем самым генетически тучным мышам ob/ob, которые неспособны сами вырабатывать это вещество, – многие воодушевились: а что, если использовать этот гормон для лечения пациентов, страдающих ожирением? Когда мышам ob/ob впрыскивали лептин, они быстро худели: начинали меньше есть, больше двигаться и за месяц сбрасывали почти половину прежнего веса. Если лептин вводили нормальным, худым мышам – те тоже теряли в весе. Раз лептин так действует на мышей, может быть, из него получилось бы лекарство и для человека?

Ответ на этот вопрос – как явствует из продолжающейся эпидемии ожирения – отрицательный. Когда полным людям делали инъекции лептина, это никак не влияло ни на их вес, ни на их аппетит. Зато эта обескураживающая неудача пролила свет на истинную природу ожирения. В отличие от мышей ob/ob люди толстеют не от дефицита лептина. Напротив, у полных людей обнаруживается повышенный уровень лептина: ведь у них имеются лишние жировые ткани, которые производят этот гормон. Беда в том, что их мозг оказывает сопротивление действию лептина. Когда худой человек набирает немного веса, его организм начинает вырабатывать больше лептина, что приводит к снижению аппетита. А мозг полного человека просто не воспринимает сигналы лептина, хотя его вырабатывается очень много, поэтому люди с избыточным весом никогда не ощущают сытости.

Сопротивляемость мозга лептину, похоже, указывает на важное явление. При ожирении кардинально меняется действие нормальных механизмов, регулирующих аппетит и накопление энергии. Лишние жировые прослойки – это не просто место, куда можно «сложить» нерастраченные калории. Это скорее центральный пункт управления запасами энергии, работающий по принципу термостата в холодильнике. Когда жировые клетки в организме наполняются липидами (жирами) до нормального состояния, «термостат» выключается, уменьшая аппетит, чтобы человек прекратил есть и не запасал лишней энергии. Когда жировые запасы истощаются, внутренний регулятор включается снова, пробуждая аппетит и заставляя человека поесть и запасти еще немного жира. Как и у садовых славок, набор веса происходит не потому, что человек ест больше: все дело в изменении биохимической стратегии, в соответствии с которой организм начинает иначе распоряжаться энергией. Этот «эффект славки» переворачивает представление о том, что для сохранения веса достаточно поддерживать баланс между потреблением пищи и уровнем физической активности. Если это представление неверно, значит, ожирение, возможно, не следует называть «болезнью неправильного образа жизни», в которой виноваты чревоугодие и лень: правильнее считать его заболеванием, имеющим пока непонятное внутреннее происхождение.

Если вам кажется, что это слишком смелая гипотеза, задумайтесь: еще несколько десятилетий назад «все знали», что язва желудка развивается из-за стресса и кофеина. Считалось, что эта болезнь, как и ожирение, вызвана неправильным образом жизни: стоит только изменить привычки – и все как рукой снимет. Врачи давали пациентам простейшие советы: не волноваться и пить воду. Это не помогало, люди приходили на прием снова и снова, а кислота продолжала прожигать им желудок. Врачи, видя неудачи, делали казавшиеся очевидными выводы: значит, сами пациенты и виноваты: не прислушивались к их умным советам.