Добавить в цитаты Настройки чтения

Страница 7 из 7

Поскольку свету нужно время, чтобы дойти до нас из отдаленных уголков Вселенной, то, заглянув в глубокий космос, мы на самом деле видим, что происходило много эпох назад. Так что если разумные обитатели далекой-далекой галактики хотели бы измерить температуру фонового космического излучения в момент, который мы сейчас видим, получилось бы больше чем 2,7 Кельвина, поскольку в этот момент они жили в более молодой Вселенной, меньше и жарче нынешней.

Поскольку свету нужно время, чтобы дойти до нас из отдаленных уголков Вселенной, то, заглянув в глубокий космос, мы на самом деле видим, что происходило много эпох назад.

Оказывается, эту гипотезу можно проверить. Молекула цианида CN (когда-то его использовали как действующее вещество в составе газа, которым умерщвляли приговоренных к смертной казни) под воздействием микроволнового излучения переходит в возбужденное состояние. Если микроволновое излучение теплее, чем наше фоновое реликтовое, молекула возбуждается сильнее. В рамках модели Большого взрыва микроволновое излучение, которому подвергается цианид в далеких, более молодых галактиках, должно быть теплее, чем сегодня в нашей галактике Млечный Путь. Именно эту картину мы и наблюдаем.

Подделать это невозможно.

А почему нас вообще интересует все это? Первые 380 000 лет после Большого взрыва Вселенная была непрозрачной, поэтому пронаблюдать возникновение вещества было невозможно, даже если бы мы с вами сидели в первом ряду. Нельзя было различить, где начинают формироваться скопления галактик и пустоты. Чтобы кто-то увидел что-то стоящее, фотоны должны были беспрепятственно пролететь через Вселенную и тем самым послужить переносчиками информации.

Первые 380 000 лет после Большого взрыва Вселенная была непрозрачной, поэтому пронаблюдать возникновение вещества было невозможно, даже если бы мы с вами сидели в первом ряду.

Транс-космическое путешествие каждого фотона начинается в той точке, где он налетел на последний электрон, очутившийся у него на пути, – в «точке последнего рассеяния». По мере того как фотоны беспрепятственно разбегаются в разные стороны, они создают расширяющуюся «поверхность» последнего рассеяния – глубиной примерно 120 000 лет. Это та самая поверхность, на которой родились все атомы во Вселенной: электрон присоединяется к атомному ядру, и крошечный выброс энергии в виде фотона улетает прочь в бурную алую даль.

К этому времени некоторые области Вселенной уже начали уплотняться благодаря гравитационному притяжению составляющих их частей. Фотоны, последними рассеявшиеся на электронах в этих областях, имеют несколько более холодный спектр, чем те, которые рассеялись на менее общительных электронах, болтающихся в пустоте. Там, где накапливается вещество, растет сила тяжести, благодаря чему туда стягивается еще больше вещества. Эти области стали зародышами сверхскоплений галактик, а в других областях по-прежнему было относительно пусто.

Если составить подробную карту фонового космического микроволнового излучения, окажется, что она не совсем ровная. Там есть участки чуть теплее и чуть холоднее среднего. Если изучить эти отклонения температуры фонового космического излучения, то есть поискать закономерности на поверхности последнего рассеяния, можно сделать выводы о структуре и составе вещества в ранней Вселенной. Чтобы определить, как возникали галактики, скопления и сверхскопления, мы опираемся на самые точные данные о фоновом излучении, мощную капсулу времени, которая дает астрофизикам возможность реконструировать историю Вселенной. Изучение его закономерностей – это что-то вроде космической френологии: мы ощупываем шишки на черепе новорожденной Вселенной.

Если сопоставить данные фонового космического излучения с другими наблюдениями современной и далекой Вселенной, можно выявить всевозможные фундаментальные свойства космоса. Сравните распределение размеров и температур теплых и холодных участков – и станет понятно, какой была сила гравитации в те времена, как быстро накапливалось вещество, и это, в свою очередь, подскажет, сколько во Вселенной было обычного вещества, темного вещества и темной энергии. А отсюда можно сделать непосредственный вывод о том, будет ли Вселенная расширяться вечно.

Обычное вещество – это вещество, из которого состоим все мы. Оно чувствительно к гравитации и взаимодействует со светом. Темное вещество – это таинственная субстанция, чувствительная к гравитации, но не взаимодействующая со светом никакими известными нам способами. Темная энергия – это загадочное давление вакуума (пустого пространства), которое действует противоположно гравитации и вынуждает Вселенную расширяться все быстрее. Наше френологическое обследование показывает, что мы понимаем, как вела себя Вселенная в эпоху последнего рассеяния, но оказывается, что эта Вселенная в основном состоит из субстанции, о которой нам ничего не известно. Однако, несмотря на наше глубочайшее невежество, сегодня у космологии наконец появилась зацепка, поскольку фоновое космическое излучение показывает, из какого портала вышли мы все. Именно здесь физика становится особенно интересной, именно так мы можем узнать, что творилось во Вселенной и до, и после того, как свет в ней обрел свободу.





Темное вещество – это таинственная субстанция, чувствительная к гравитации, но не взаимодействующая со светом никакими известными нам способами.

Само по себе открытие космического микроволнового излучения вывело космологию из сферы мифологии. Однако чтобы превратить ее в современную точную науку, потребовалась подробная карта фонового микроволнового излучения. Космологи очень высокого мнения о себе. Еще бы! Ведь их работа – выяснить, какова причина возникновения Вселенной! Но без данных их объяснения были лишь гипотезами. А теперь каждое новое наблюдение, каждая крупица данных служит сразу двум целям: во-первых, дает космологии такую же плодородную почву и надежный фундамент, как и у всех других точных и естественных наук, а во-вторых, отсеивает теории, которые люди выдумывали, когда данных было недостаточно и невозможно было сказать, правы они или нет.

Без этого никакая наука не может считаться зрелой.

4. Между галактик

При масштабной инвентаризации Вселенной и ее составляющих в первую очередь обычно подсчитывают галактики. По последним оценкам, в наблюдаемой Вселенной их примерно сто миллиардов. Галактики – яркие, красивые, набитые звездами – украшают темные пустые бездны пространства, будто города – ночной пейзаж под крылом самолета. Но насколько на самом деле пусты эти пустые бездны? (Насколько пусты поля и луга между городами?) Если галактики бросаются в глаза и убеждают нас, что все остальное неважно, это не значит, что в пространстве между галактиками не таится много такого, что труднее пронаблюдать. Не исключено, что это даже интереснее или важнее для эволюции Вселенной, чем сами галактики.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.