Добавить в цитаты Настройки чтения

Страница 18 из 99

1.2. Характеристики феномена гравитации

Рассмотрим некоторые экспериментальные факты, которые венерианский теоретик должен был бы обсудить при создании теории, объясняющей этот новый замечательный эксперимент.

Рис. 1.1.





Прежде всего фактом является то, что сила притяжения определяется законом обратных квадратов расстояний. Что касается наших знаний об этом законе, то он известен очень-очень точно на основании изучения орбит планет. Кроме того, мы знаем, что сила пропорциональна массам объектов. Этот факт был известен Галилео Галилею, который обнаружил, что все тела падают с одинаковым ускорением. Насколько хорошо нам это известно? В принципе, что надо делать, абсолютно ясно; сначала мы определяем массу как инерцию данного объекта, которую мы измеряем, прикладывая к ней известные силы и измеряя ускорения. Затем мы измеряем притяжение, обусловленное гравитацией, например взвешиванием, и затем сравниваем результаты. Такие эксперименты, измеряющие силы и ускорения, должны были бы быть очень трудными для их проведения с достаточной точностью, однако имеются другие пути проверки закона Галилея с точностью до 10⁻⁸, один из которых был проделан Этвешем. Такой эксперимент может быть реализован путём сравнения гравитационной силы Земли с центробежной силой, обусловленной вращением Земли. Ясно, что возникновение центробежной силы представляет собой чистый эффект инерции. В принципе гиря отвеса, находящегося на некоторой широте, не равной 0° или 90°, направлена не на центр Земли. Действительно, гиря отвеса не направлена к центру также и потому, что Земля имеет несферическую форму, но все эти факторы могут быть учтены при проведении сравнения сил. В любом случае, при некотором промежуточном значении широты (не совпадающим с экваториальным или полярным) гиря отвеса отклоняется в направлении, которое определяется результатом действия гравитационной и центробежной силы. Если же сделать гирю отвеса из некоторого другого материала, который имеет другое отношение инерциальной и гравитационной массы, то отвес мог бы отклониться на несколько отличный от первоначального угол. Мы можем, таким образом, сравнивать различные вещества; например, если сделать первую гирю из меди, а вторую из водорода (конечно, может оказаться трудным изготовить гирю из чистого водорода, однако без труда её можно было бы изготовить из полиэтилена), мы можем проверить постоянство инерциальной и гравитационной массы.

В реальном эксперименте не измеряются разности столь малых углов, а измеряются вращающие моменты; такие малые вращающие моменты являются более удобными для измерений потому, что кварцевые нити обладают для этого весьма подходящими свойствами, являясь достаточно тонкими и в то же время способными выдерживать достаточно большую нагрузку. Как это обычно делается, два тела, сделанные из двух различных материалов, подвешиваются на концах стержня, а стержень подвешивается в своей средней точке; если компоненты сил, перпендикулярные гравитационным силам, не равны, то имеется некоторый результирующий вращающий момент, который может быть измерен. Опубликованные результаты недавнего эксперимента Дикке показали, что эффекта нет, и сделан вывод, что отношение инерциальной массы к гравитационной является константой с точностью 10⁻⁸ для самых различных веществ от кислорода до свинца.

Подобный эксперимент может быть проведён путём сравнения гравитационной силы, обусловленной влиянием Солнца, с инерциальными силами, связанными с нашим орбитальным движением вокруг Солнца. Находясь на Земле, мы вовлечены во вращение в пространстве с фантастической скоростью вдоль орбиты Земли, и единственная причина не замечать этого движения состоит в том, что все другие объекты, нас окружающие, также движутся по той же орбите; если бы гравитационное притяжение не было бы в точности то же самое для различных объектов, то эти объекты должны были бы стремиться к тому, чтобы иметь различные орбиты, и существовали бы эффекты, которые были бы связаны с этими различиями. Общий эффект выглядел бы как наличие небольшой силы в направлении Солнца. Такой эффект искался через попытки обнаружения некоторой суточной осцилляции, которая могла бы быть найдена по поведению баланса закручивающего момента для пары масс в ночное и дневное время. Естественно отличия были измерены, некоторые из этих отличий были обусловлены тем, что различные стороны здания имеют различные температуры - трудность проведения таких экспериментов с очень маленькими эффектами заключается в том, что необходимо быть уверенными, что измеряется на самом деле то, о чем идёт речь, а не что-либо иное. Тем не менее, можно сделать заключение из этих экспериментов, что все объекты также хорошо сбалансированы на своих орбитах, как и Земля, с точностью 10⁻⁸. Такая точность 10⁻⁸ уже может сообщить нам множество очень интересных вещей; например энергия связи в ядре порядка б Мэв на нуклон, а массы нуклонов порядка 940 Мэв, или, грубо говоря, энергия связи порядка одного процента общей энергии. Тогда точность 10⁻⁸ говорит нам, что отношение инерциальной и гравитационной массы энергии связи является константой с точностью 10⁻⁶. Мы можем даже проверить отношение энергии связи для электронов, находящихся на нижних уровнях, поскольку 10⁻⁸ массы нуклона составляет порядка 9 эв. Если в дальнейших экспериментах будет достигнута точность 10⁻¹⁰, что, как предполагается, будет сделано в ближайшем будущем, мы будем иметь пяти процентную точность на возможный диапазон значений энергии химической связи, которая порядка двух вольт.