Страница 4 из 15
Рассчитаем поправку: ∆А = L (Е / х) = 0,5*(5 / 40) = 0,0625. Обновленное значение: А = A + ∆А = 0,4 + 0,0625= 0,4625.
Сглаженное уточнение: y = Ax = 0,4625 * 40 = 18,5.
Теперь перейдем к расчетам следующего тренировочного примера.
Используя обновлённое на первом прогоне значение А, для второго тренировочного примера у = Ax = О,4625 * 20 = 9,25.
Значение, у = 9,25 – всё так же далеки от значения y = 39, но мы все равно движемся в нужном направлении, но уже с меньшой скоростью.
При x = 20 и коэффициенте А = 0, 4625, ошибка E = T – y = 39 – 9,25 = 29,75. Так как мы хотим, чтобы график прямой, не проходил через точку с нашими координатами, а проходил ниже её, то принимаем целевое значение – T = 39. Рассчитаем поправку ∆А = L (Е / х) = 0,5*(29,75 / 20) = 0,74375. Обновлённое значение А = A + ∆А = 0,4625+ 0,74375 = 1,20625.
Сглаженное уточнение y = = Ax = 1,20625 * 20 = 24,125.
Теперь еще раз отобразим на координатной диаграмме, начальный, улучшенный и окончательный варианты разделительной линии:
Можно убедиться в том, что сглаживание обновлений приводит к более удовлетворительному расположению разделительной линии.
Если еще уменьшить скорость обучения L и повторить расчеты с первым и вторым обучающим примером, то в итоге наша разделительная линия окажется очень близко к воображаемой линии.
Применяя способ уменьшение величины обновлений с помощью коэффициента скорости обучения, ни один из пройденных тренировочных примеров, не будет доминировать в процессе обучения.
ГЛАВА 2
Изучаем Python
В этой главе мы будем создавать собственные нейронные сети. Сначала создадим модель работы искусственного нейрона, а затем научимся моделировать сеть из множества нейронов.
Создаем нейронную сеть на Python
При моделировании нейронных сетей, мы будем использовать язык программирования Python.
Почему Python? Он очень прост в освоении, кроме того, нейронные сети создают и обучают в основном на этом языке. Кроме того, Python очень популярный и распространённый язык программирования.
О Python, можно рассказывать долго и много, но мы будем изучать Python лишь в том объеме, который необходим для достижения нашей цели – изучить работу нейронных сетей.
Установка пакета Anaconda Python
Посетите сайт – http://www.continuum.io/downloads, на котором предлагаются различные варианты установки Anaconda Python. Я использую пакет Anaconda, для операционной системы Windows, вы можете выбрать другие варианты – OS X или Linux. Пакет Anaconda предоставляет удобное средство интерактивной разработки Jupyter Notebook, в котором необычайно удобно писать и проверять программный код. На момент написания книги, доступен пакет Anaconda 5.0.1, и Python 3.6 – который и рекомендую установить.
Если, к тому времени, когда вы посетите сайт, все будет выглядеть иначе, не пугайтесь, сути дела это не поменяет.
Простое введение в Python
После установки пакета Anaconda, запустите интерактивную оболочку Jupyter Notebook, нажмите на кнопку New у правого края окна и выберите в открывшемся меню пункт Python 3, что приведет к открытию пустого блокнота:
Переменные
В переменных всегда что-то хранится (число, объекты, символы, строки). Попробуем создать переменную x со значением 20. И выведем это значение, на экран, при помощи функции – print(). Функция print() – выводит на консоль то, что расположено между её скобками:
С переменными, которые хранят числа, можно выполнять различные простейшие действия: складывать, вычитать, умножать, делить и возводить в степень:
Справа от функции print(), вы можете видеть комментарии. Делаются они очень просто, для этого, перед комментарием, необходимо поставить знак #, и текст после этого знака, в данной строке, Pytnon будет воспринимать, не как программный код, а как обычную текстовую область.
Кроме числовых переменных есть ещё строковые, с которыми мы тоже можем проделать ряд действий:
Функции
Иногда возникает необходимость повторять одни и те же действия, в ходе написания программы, по многу раз. Облегчить наш труд в подобной ситуации, призваны функции.
Давайте представим, что нам очень часто встречается одно и то же действие, а именно сумма двух различных переменных. Написав эту функцию в отдельном модуле, мы в последующем можем обращаться к ней, не переписывав одни и те же действия, по многу раз. Притом функция может возвращать какое-то значение, а может просто выполнить своё действие, например, вывод на консоль информации, при этом ничего не вернув.
Функция – отдельный блок кода, который можно вызывать по её имени из любого места программы:
Условные операторы
Условные операторы нужны для того, чтобы выполнить два разных набора действий в зависимости от того, истинно или ложно проверяемое ими утверждение. Иными словами – в зависимости от того, ложно или истинно утверждение, программа, как бы разветвляется, идет по пути, указанным ей этим условием.
Условия
В Python, условия записываются при помощью конструкции if:… else:… if – в переводе с английского – если, else переводится как – иначе.
После ключевого слова if, следует условие, которое им проверяется, если это условие правда, то выполняется тело этого оператора if, если ложно, то тело оператора if, не выполнится.
Давайте рассмотрим это на конкретном примере:
Здесь, как мы можем наблюдать, условие не выполнилось.
В этот случае, мы наблюдаем, что наше условие выполняется.