Страница 20 из 24
Евдокс объяснил свою систему в книге «О скоростях», впоследствии утерянной, как и все его остальные сочинения. Аристотель, который лишь на поколение младше Евдокса, узнал о его системе от Полемарха, знакомого с ее создателем. Евдем подробно описал ее в своей утраченной истории астрономии, а из этого труда описание перешло в сочинение о сферах, написанное Созигеном, философом-перипатетиком, который жил во второй половине II века н. э. Этот труд тоже утерян, но длинный отрывок из него сохранился в комментарии Симпликия, и, таким образом, мы обладаем подробным описанием системы Евдокса[81].
В то время как все другие античные и средневековые космологические системы (кроме тех, что признают вращение Земли) объясняют суточное движение Солнца, Луны и планет по небу тем допущением, что сфера неподвижных звезд во время своего ежедневного вращения увлекает за собой все остальные сферы, система Евдокса для этой цели предусматривает отдельный механизм у каждой планеты, тем самым добавляя в целом семь сфер к количеству, необходимому для других целей. Так, движение Луны производится тремя сферами; первая и самая дальняя из них совершает оборот с востока на запад за двадцать четыре часа, как неподвижные звезды; вторая вращается с запада на восток вокруг оси зодиака, вызывая ежемесячное движение Луны вокруг небес; третья сфера медленно поворачивается, по Симпликию, в том же направлении, что и первая, вокруг оси, наклоненной к оси зодиака под углом равным самой высокой широте, которой достигает Луна, причем Луна помещена на том, что мы могли бы назвать экватором этой третьей сферы. Третью сферу понадобилось добавить, говорит Симпликий, потому что Луна достигает наивысшей северной и южной широты не в одних и тех же точках зодиака, а в точках, которые перемещаются по зодиакальному кругу в направлении противоположном порядку двенадцати знаков. Другими словами, третья сфера должна объяснить ретроградное движение узлов лунной орбиты за 18½ года. Однако легко увидеть (как указал Иделер), что Симпликий допустил ошибку, утверждая, что самая внутренняя сфера движется очень медленно и в описанном порядке; так как Луна в такой схеме будет проходить лишь один раз через каждый узел за 223 лунации и находиться к северу от эклиптики в течение девяти лет, а затем к югу от нее в течение еще девяти лет. Очевидно, что Евдокс должен был учить, что внутренняя сфера (несущая Луну) вращается за 27 дней[82] с запада на восток вокруг оси, наклоненной под углом равным максимальной широте Луны, относительно оси второй сферы, причем вторая совершает оборот по зодиаку за 223 лунации в обратном направлении. Таким образом эти явления получают полное объяснение, вернее, насколько их знал Евдокс, потому что он, по-видимому, ничего не знал об изменении скорости Луны по долготе, хотя ниже мы увидим, что Каллиппу это уже было известно в 325 году до н. э. Но то, что движение лунного узла было известно на сорок или пятьдесят лет раньше, доказывает лунная теория Евдокса.
Что же касается солнечной теории, то от Аристотеля мы узнаем, что она также основана на трех сферах: одна совершает такое же суточное движение, как и сфера неподвижных звезд, вторая вращается по зодиаку, а третья – по кругу, наклоненному к зодиаку. Симпликий подтверждает это и прибавляет, что третья сфера, в отличие от лунной, вращается не в обратном направлении относительно второй, а в том же, то есть в направлении зодиакальных знаков, и намного медленнее, чем вторая сфера. Здесь Симпликий допускает ту же ошибку, что и в описании лунной теории, так как Солнце, по его описанию, веками находилось бы в северной или южной широте и за год описывало бы небольшой круг, параллельный эклиптике, вместо большого круга. Конечно, медленно двигаться должна вторая сфера, причем в направлении по зодиаку, тогда как движение второй сферы должно происходить за год[83] по наклонному большому кругу, который должен описывать центр Солнца. Этот круг посредством второй сферы поворачивается вокруг оси зодиака, и Евдокс предполагал, что его узлы на эклиптике совершают очень медленное движение вперед, а не обратно, как лунные узлы. Годовое движение Солнца предполагалось совершенно единообразным, то есть Евдокс, по всей видимости, отвергал замечательное открытие, сделанное Метоном и Евктемоном примерно за 60—70 лет до того, а именно что Солнцу требуется не одно и то же время, чтобы описать четыре квадранта своей орбиты между равноденствиями и солнцестояниями[84].
Весьма примечательно, что, хотя Евдокс таким образом проигнорировал открытие изменчивой орбитальной скорости Солнца, он считал фактом совершенно воображаемую идею, что Солнце за год проходит не по эклиптике, а по кругу, наклоненному к ней под небольшим углом. Согласно Симпликию (с. 493), «Евдокс и те, что были до него» пришли к такому выводу, наблюдая, что Солнце в летнее и зимнее солнцестояние не всегда восходит в одной и той же точке горизонта. Возможно, древним наблюдателям не пришло в голову, что и эти грубые определения азимута восходящего Солнца, и наблюдения с гномоном недостаточно точны; без астрономических приборов они заметили, что ни Луна, ни пять планет в своем движении не ограничены эклиптикой (или, как они называли ее, кругом, проходящим через середину зодиака), и почему только одно Солнце не должно смещаться по широте, если все остальные блуждающие звезды делают это настолько явно? Это воображаемое отклонение Солнца от эклиптики часто встречается у античных авторов. Так, Гиппарх, отрицающий существование данного феномена, цитирует следующий фрагмент из «Зеркала» – утерянной книги Евдокса о кругах и созвездиях сферы: «Кажется, что Солнце также совершает возвраты (τροπὰς, солнцестояния) в разные места, но гораздо менее заметно» (комментарий к «Явлениям» Евдокса и Арата)[85]. Каков, по мнению Евдокса, был наклон солнечной орбиты или период обращения узлов, нам неизвестно, и, вероятно, Евдокс имел не слишком точные представления о данном предмете. Плиний указывает наклон в Г, а точку максимальной широты – в 29-м градусе Овна («Естественная история», XXII, 16)[86]. С другой стороны, Теон Смирнский, который излагает вопрос подробнее, утверждает, опираясь на авторитет Адраста (жившего около 100 г. и. э.), что наклон составляет ½° и что Солнце возвращается на ту же широту через 365⅛ дня, так что тени гномона становятся одной длины, как он говорит, притом что Солнцу требуются 365¼ дня, чтобы вернуться в ту же точку равноденствия или солнцестояния, и 365½ дня, чтобы вернуться на то же расстояние от нас. Из этого следует, что он считал, будто солнечные узлы совершают попятное движение (а не прямое, как полагал Евдокс) и за период 365¼: ⅛ = 2922 года («Астрономия», с. 91, 108, 175, 263, 314). Скиапарелли показывает, что с наклоном ½° между осями второй и третьей сферы точки солнцестояния должны колебаться в пределах 2°28′. Это, конечно, влияет на продолжительность тропического года, и вполне возможно, что вся теория солнечной широты первоначально возникла из того факта, что тропический год, как оказалось, отличается от сидерического, истинной причиной чего является прецессия равноденствий. Кто первый высказал эту теорию, неизвестно. Несмотря на огромный авторитет Гиппарха и Птолемея, компилятор Марциан Капелла уже в Y веке по-прежнему пребывает в этом необъяснимом заблуждении («О бракосочетании Филологии и Меркурия», кн. VIII, 867) и даже уточняет его, утверждая, что Солнце движется по эклиптике, за исключением Весов, где оно отклоняется на ½°! Вероятно, это значит, что широта Солнца была неразличима для тогдашних инструментов, за исключением периодов нахождения в Весах (и Овне), где она достигает ½°, и вследствие этого предполагалось, что узлы почти совпадают с солнцестояниями. Надо отметить, что всем этим авторам неизвестна прецессия равноденствий.
81
Симпликий также цитирует в этой связи Александра Афродисийского и Порфирия, философа-неоплатоника.
82
А точнее, за 27 дней 5 часов 5 минут 36 секунд – драконический месяц.
83
Строго говоря, за период несколько дольше тропического года из-за предполагаемого медленного прямого движения второй сферы.
84
Это согласуется с утверждением в так называемом Папирусе Евдокса, что этот астроном определял продолжительность осени в 92 дня, а продолжительность трех остальных времен года – в 91 день. Этот папирус был написан около 190 года до н. э. и, видимо, был ученической тетрадью, возможно наскоро набросанной во время нескольких лекций или после них.
85
То есть максимальная широта гораздо меньше, чем у Луны. Гиппарх добавляет, что наблюдения с гномоном не показывают широты, а лунные затмения, рассчитанные без учета какой-либо солнечной широты, согласуются с наблюдениями в пределах максимум двух цифр. Кн. I, с. 88—92.
86
Он явно неверно понял источник и посчитал, что диапазон в 1° означает наклон в 1°.