Добавить в цитаты Настройки чтения

Страница 3 из 20

Считается, что именно из-за этих скоплений погибают нервные клетки таламуса при фатальной семейной бессоннице. Скопление бета-амилоидов также способствует развитию болезни Альцгеймера – нейродегенеративного заболевания, прогрессирование которого сопровождается и ухудшением качества сна[28].

В 2016 году группа Недергард выяснила, что во время глубокого сна в межклеточной жидкости мозга уменьшается содержание ионов калия, зато увеличивается содержание ионов кальция, магния и водорода[29]. Эти изменения приводят к тому, что сигналы, ранее возбуждавшие некоторые клетки, больше не вызывают их активации. Если искусственно вернуть концентрации ионов в межклеточной жидкости к нормальному уровню, характерному для состояния бодрствования, то и активность мозга изменится соответствующе – станет “дневной”.

По-видимому, “промывка” непосредственно влияет на работу нервной системы и несовместима с ее дневной деятельностью. Поэтому и существуют два разных состояния: сон и бодрствование. Не исключено, что похожие механизмы виновны в искаженном восприятии реальности во время переходов от сна к бодрствованию и наоборот.

Состояния, когда паралич мышц наступает до засыпания или не успевает пройти сразу при пробуждении (сонный паралич), когда паралич мышц вообще не наступает во сне, и лунатизм – не единственные, которым иногда приписывают мистическую природу. Примерно 90 % людей с ампутированными конечностями описывают странные ощущения – словно недостающая часть их тела все еще на месте[30]. Этот феномен назвали синдромом фантомной конечности. И характерен он не только для людей. Кошки, оставшиеся с тремя лапами, нередко пытаются несуществующей четвертой копать в лотке, чесать себя за ухом, хватать игрушки и даже царапать собак. Кто-то верит, будто фантомные конечности подтверждают существование “нематериальной”, “тонкой”, “эфирной”, “астральной” оболочки тела. Но объяснение на самом деле гораздо проще.

При утрате руки или ноги ранее связанные с ними зоны коры головного мозга никуда не деваются. Просто клетки, получавшие сигналы от ампутированной конечности, утрачивают исходные функции и начинают принимать сигналы от других частей тела. Видимо, поэтому некоторые люди испытывают ощущения в фантомной руке, когда кто-нибудь прикасается к их губам (области коры, отвечающие за обработку сигналов от рук и от губ, обычно расположены рядом)[31].

Нередко утраченная конечность у людей начинает болеть. Согласно одной гипотезе, в такой фантомной боли виновата уже упомянутая способность нервных клеток образовывать новые нервные связи[32]. Клетки, ранее воспринимавшие боль в конечности, получают сигналы из новых источников, возбуждаются – и порождают неприятные ощущения. Другая же гипотеза гласит, что нервные клетки могут активироваться спонтанно[33]. Например, клетки спинного мозга кошек, отвечающие за передачу сигналов от конечностей в головной мозг, способны возбуждаться, даже если все нервы, которые подходят к спинному мозгу от периферии тела, перерезаны[34].

Нейрофизиолог Вилейанур Рамачандран, автор книги “Фантомы мозга” (Phantoms in the Brain)[35], предложил собственное объяснение фантомной боли. Мозг по-прежнему посылает сигналы мышцам утраченной конечности по нисходящим нервным путям и ожидает ответных сигналов. Не получая обратной связи, он может решить, что нечто постороннее мешает мышцам сокращаться, придавливает конечность. Стремясь избежать повреждения несуществующей конечности, мозг посылает все новые сигналы (увы, с тем же отрицательным результатом). Поскольку он безуспешно пытается пошевелить конечностью снова и снова, неприятное ощущение сдавленности с каждым разом усиливается, вплоть до возникновения боли.

Оказывается, мозг можно обмануть и заставить поверить, что конечность в порядке. Для лечения фантомной боли у людей с ампутированной рукой Рамачандран разработал специальный зеркальный ящик[36]. Человек помещает в него здоровую руку и видит ее отражение на том самом месте, где находилась бы вторая рука, до ампутации. Его просят сжимать руку, глядя в ящик. При этом человек испытывает иллюзию, будто у него две руки, с которыми все в порядке, – и боль, как правило, проходит[37]. Впрочем, стоит оговориться: проведено еще достаточно мало аккуратных исследований, так что рано делать окончательные выводы об эффективности этой процедуры[38].

Позже ученые придумали еще один способ лечить фантомную боль – с помощью виртуальной реальности[39]. Людей обучали управлять компьютерной моделью утраченной части тела, используя мышцы, оставшиеся на месте ампутации. Оказалось, это тоже уменьшает боль.

Рамачандран описал эксперимент, демонстрирующий, что своеобразные “фантомные конечности” могут появиться и у здорового человека<48>. Перед испытуемым кладут муляж руки, а его собственную руку прячут за перегородкой. Экспериментатор несколько раз одновременно прикасается к руке добровольца и к муляжу. Через некоторое время испытуемый заявляет, что чувствует прикосновения к искусственной руке, как будто та стала частью его тела. Если же теперь внезапно ударить по муляжу большим резиновым молотком, реакция пациента будет весьма эмоциональной.

В подобных экспериментах эмоциональная реакция обычно регистрируется полиграфом (его часто называют детектором лжи). Когда человек испытывает сильные эмоции, у него меняются различные физиологические параметры. В частности, усиливается потоотделение. Кожа увлажняется – и ее электрическое сопротивление падает (току становится проще через нее проходить), что и фиксируется прибором.

В контрольной группе испытуемых к их рукам и к муляжам прикасаются не одновременно. В таких условиях иллюзии у людей не возникает, и они реагируют спокойней, если с муляжом что-то происходит. Самый первый подобный эксперимент (правда, без молотка) провели психологи Мэтью Ботвиник и Джонатан Коэн: восемь из десяти добровольцев ощутили, будто резиновая рука, которую поглаживали одновременно с их собственной рукой, – часть их тела[40].

В 2015 году в журнале Scientific Reports вышла статья, авторам которой удалось развить эти идеи и создать иллюзию целого фантомного тела[41]. В одном из экспериментов на добровольцев надевали очки виртуальной реальности и просили смотреть вниз, словно разглядывая свой живот. При этом испытуемые видели вместо собственного тела пустоту. Экспериментаторы кисточкой много раз дотрагивались до тел добровольцев, а те одновременно видели в свои очки, как кисточка “прикасается” к пустому месту. Когда затем к “невидимому телу” в виртуальной реальности подносили не кисточку, а нож, то, как и в экспериментах с резиновой рукой, волнение испытуемых усиливалось. Иллюзия фантомного тела не возникала, если реальные и виртуальные прикосновения не совпадали по времени.

Похожие эксперименты проводились и на животных. В 2016 году в Journal of Neuroscience вышла статья, авторы которой описали иллюзию фантомного хвоста у мышей[42]. Ученые помещали грызуна в специальную камеру, ограничивающую передвижения, и клали чуть сбоку кусок резинового хвоста. Один экспериментатор некоторое время легко прикасался к мышиному хвосту и к муляжу одновременно или неодновременно, а затем его коллега, ничего не знавший об условиях эксперимента (“ослепленный”), просто по сигналу резко сжимал резиновый хвост. Грызуны реагировали сильнее, если до этого к их настоящему хвосту и к искусственному прикасались строго в одно и то же время.

28

Ju Y. E. et al.: Sleep and Alzheimer disease pathology – a bidirectional relationship. Nat Rev Neurol 2014, 10 (2): 115–119.

29

Ding F. et al.: Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 2016, 352 (6285): 550–555.

30

Mavromatis N. et al.: Experimental tonic hand pain modulates the corticospinal plasticity induced by a subsequent hand deafferentation. Neuroscience 2016, 330: 403–409.

31

Lotze M. et al.: Phantom movements and pain. An fMRI study in upper limb amputees. Brain 2001, 124 (Pt 11): 2268–2277.

Raffin E. et al.: Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb. Neuroimage 2016, 130: 134–144.

32





Flor H. et al.: Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 2006, 7 (11): 873–881.

33

Bostrom K. J. et al.: A computational model unifies apparently contradictory findings concerning phantom pain. Sci Rep 2014, 4: 5298.

34

Baev K. V. et al.: [Depolarization of primary afferents during fictitious scratching of thalamic cats]. Neirofiziologiia 1978, 10 (2): 173–176.

35

Ramachandran V. S.: Phantoms in the Brain: Probing the Mysteries of the Human Mind. 1999.

36

Ramachandran V. S., Rogers-Ramachandran D.: Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci 1996, 263 (1369): 377–386.

37

Kim S. Y., Kim Y. Y.: Mirror therapy for phantom limb pain. Korean J Pain 2012, 25 (4): 272–274.

Tilak M. et al.: Mirror therapy and transcutaneous electrical nerve stimulation for management of phantom limb pain in amputees – a single blinded randomized controlled trial. Physiother Res Int 2016, 21 (2): 109–115.

38

Barbin J. et al.: The effects of mirror therapy on pain and motor control of phantom limb in amputees: a systematic review. A

39

Cole J. et al.: Exploratory findings with virtual reality for phantom limb pain; from stump motion to agency and analgesia. Disabil Rehabil 2009, 31 (10): 846–854.

Sano Y. et al.: Reliability of phantom pain relief in neurorehabilitation using a multimodal virtual reality system. Conf Proc IEEE Eng Med Biol Soc 2015, 2015: 2482–2485.

40

Botvinick M., Cohen J.: Rubber hands “feel” touch that eyes see. Nature 1998, 391 (6669): 756.

41

Guterstam A. et al.: Illusory ownership of an invisible body reduces autonomic and subjective social anxiety responses. Sci Rep 2015, 5: 9831.

42

Wada M. et al.: The rubber tail illusion as evidence of body ownership in mice. J Neurosci 2016, 36 (43): 11133–11137.