Добавить в цитаты Настройки чтения

Страница 8 из 39

Но одних внутренних рек мало. Для того, чтобы жидкость в каналах двигалась, эволюции нужен был насос, и она сделала насос. Причем сделала по всем законам техники – получился отличный такой насосик, как из магазина – спаренный двухступенчатый, с клапанами и манжетами.

Сердце.

Со школы мы все знаем, что сердце прокачивает по телу кровь. От сердца ярко-красная, насыщенная кислородом кровь идет по артериям, разветвляясь по более узким руслам вплоть до капилляров. Таким образом происходит транспорт кислорода и питательных веществ к клеткам нашего тельца. Затем по венам негожая темно-красная, почти черная кровь, насыщенная углекислым газом и продуктами клеточного распада, движется обратно к насосу, забегая по пути в легкие и печень, где происходит газообмен и очистка «канализационных стоков» соответственно. Все просто…

Но просто только в идее. А вот с реализацией неожиданно возникают трудности. Которые и пытается разрешить Творец с улицы Молдагуловой. Старик протягивает мне листки с цифрами, а его жена, держась за стул, стоит рядом и переживает за него.

– Не получается! Общая длина сосудов в человеческом теле достигает 100 000 км, – делится знаниями инженер-физиолог. – А мощность сердца всего от 3 до 10 Вт. Вы здесь никакой нестыковки не видите?

Нестыковку я вижу, но молчу, ожидая продолжения.

– Подобное соотношение не отвечает элементарным гидромеханическим законам! Имея такую мизерную мощность, продавить густую жидкость по десяткам тысяч (!) километров трубок просто невозможно!..

– Капилляры сами засасывают, – кидаю я.

– Хм… У одного из теоретиков физиологии я нашел такую фразу: «сопротивление венозному притоку крови в сердце не может быть выражено количественно». Это написано в трехтомнике Шмидта и Тевса «Физиология человека». И меня, как гидромеханика, помню, написанное немало удивило! Кровеносная система – та же водопроводная или канализационная сеть – сплошные трубы. Никаких проблем с расчетом трубопроводных сетей у человечества давно нет – построены миллионы километров трубопроводов! Спрашивается, почему гидродинамическое сопротивление стальных труб измерить можно элементарно, а сопротивление кровеносных сосудов нельзя? Что за мистическое отношение такое? Я решил разобраться…

– Похвальное желание, – одобрил я, устроился поудобнее и, как говорят в Интернете, запасся попкорном. Голованов мой интерес почувствовал. Его глаза тоже загорелись:

– Многие врачи, которые сердцем не занимаются, считают, что с теорией кровообращения все в порядке. У других есть подозрение, что теория простроена не до конца. А вот некий Джон Марпл вообще полагает, что здесь конь не валялся, и решение проблемы кровообращения достойно Нобелевской премии… Давайте для начала посмотрим на то устройство, которое занимается прокачкой жидкости в нашем организме. Сердце давно и хорошо изучено, оно состоит из нескольких отделов – желудочки, предсердия… Но с инженерной точки зрения сердце – это просто комплекс из двух спаренных насосов, каждый из которых имеет всасывающую и нагнетательную часть. Один насос стоит в артериальной части, другой в венозной. То есть мы имеем как бы два сердца – правое и левое. Каждое сердце состоит из двух насосов – в медицине они называются предсердием и желудочком. Медики не знают, почему конструкция именно такая, и до сих пор спорят, зачем нужно предсердие, если основную перекачку осуществляет желудочек, но как технарь я вижу перед собой самой обычный двухступенчатый насос. Предсердие – всасывающая линия, желудочек – нагнетательная. И если врачи хотят понять, почему все так устроено, пусть почитают о преимуществах двухступенчатых насосов перед одноступенчатыми.

Я кивнул. Мне было не жалко ленивых врачей, не желающих читать про насосы. Я просто ждал развязки этой сердечной драмы.

– Медики представляют себе работу сердца вот так, – Голованов положил передо мной диаграмму давлений в сердце из какого-то медицинского учебника. – Но с точки зрения гидравлики то, что здесь нарисовано, просто чушь. Вот как на самом деле должен работать и работает двухступенчатый насос.





Перед моим взором оказалась другая диаграмма. Она хотя и была похожей, но отличалась от первой довольно существенно. Я снова молча кивнул, стараясь не упустить нить. Голованов продолжал, и я буквально увидел перед своим мысленным взором, как артериальный насос нагнетает кровь в систему, как она через патрубок аорты и шланги артерий раздается потребителям. Кровяные русла ветвятся, и заканчивается все это капиллярами – такими тонкими, что эритроциты в них застревают. Капилляры пористые, из них в межтканевую жидкость вытекает соленая вода со всякими полезными веществами. То есть клетки нашего тела как бы продолжают плавать в океане, поскольку их по-прежнему окружает жидкая среда, из которой они забирают нужное и в которую «какают» ненужным. С этой точки зрения человек – водяной пузырь с оболочкой, заключающей в себе как бы часть первобытного океана.

– Получается, что кровеносная система разомкнута! – продолжает Голованов, волнуясь. – То, что сердце нагоняет в артерию под давлением в 120 миллиметров ртутного столба, в конце пути вытекает в межтканевую жидкость, давление которой 25 мм рт. ст. А дальше всю гадость, выделенную клетками, надо собрать в венозные капиллярчики, прогнать через фильтры, насытить кислородом в легких, добавить питательных веществ из кишечника и погнать по второму кругу. Но для начала отходы надо всосать в вены из межклеточного пространства. А это нетривиальная задача! Ведь венозное сердце должно работать на всасывание, а всасывающий насос…

– Погодите! – Я встал со стула, прошелся по душной комнате с тарахтящим вентилятором, посмотрел на развевающуюся занавеску, на горы книг, лежащие везде, вытер пот со лба. – Погодите. До венозной крови мы еще доберемся. Нам пока нечем гонять артериальную. Вы же говорили о том, что сердце для такой работы не годится – там всего 10 ватт мощности. Если бы вам, как Создателю, дали техзадание – продавить жидкость в сеть тонюсеньких труб огромной длины, какой мощности насос вы бы поставили?

Голованов покачал головой:

– Я бы не взялся. 100 тысяч километров труб! Гидродинамическое сопротивление в такой системе стремится к бесконечности. Задача не имеет решения: чтобы додавить кровь до капилляров, понадобился бы насос такой мощности, что аорту пришлось бы делать из многослойной стали метровой толщины – как ствол корабельного орудия.

Я остановился и снова вытер пот со лба. Как же здесь все-таки жарко!

– Ну, ладно, а как эту закавыку преодолевают медицинские теоретики? У них ведь есть какое-то объяснение?

Вместо ответа Голованов сунул мне потрепанную медицинскую книжку.

– Полюбуйтесь. Для того, чтобы выкрутиться из положения, они отказываются от гидродинамики и используют… электротехнику – закон Кирхгофа! А там складываются величины, обратные сопротивлениям. И у них получается, что сопротивление потоку жидкости в широкой аорте больше, чем в миллионах тончайших капилляров! Абсурдность этого вывода ясна любому сантехнику, но почему-то не ясна академикам медслужбы.

Жидкость и электрический ток уподоблять нельзя, потому что электроны текут в сосудах без стенок – проводниках. И сопротивление проводника зависит в основном от свойств материала. У серебра меньше электросопротивление, у свинца больше. Это электротехника. А в случае с жидкостью совсем другой коленкор: жидкость тормозится именно о стенки трубы! То есть чем меньше просвет и чем больше относительная площадь стенок – тем ужаснее сопротивление. Уменьшите диаметр трубы вдвое, и ее окружность уменьшится тоже вдвое, а вот просвет (площадь сечения) – в 4 раза. В тонких сосудах площадь стенок – умопомрачительная, а просвет мизерный. Лепешки эритроцитов в самых узких местах сворачиваются аж трубочкой и протискиваются через сосудик по одному. Это гидродинамика. И при чем тут закон Кирхгофа?..

Пробежав глазами в протянутой мне Головановым медицинской книжке эти странные теории, находящиеся на стыке физики с идиотизмом, я сначала закрыл книгу, потом закрыл глаза и задумался. Инженерное решение проблемы должно было быть простым и изящным.