Страница 22 из 23
Используемая в ЗD-печати технология послойного синтеза заключается в добавлении к изделию материалов до готовности. По эффективности использования ресурсов это полная противоположность традиционно использовавшимся в XIX–XX веках субтрактивным («вычитающим») производственным технологиям, в частности механообработке, когда из большей по размерам заготовки, например металлической болванки, вытачивалась, выковывалась или вырезалась деталь нужной формы и меньшего веса и размера. Субтрактивные технологии по определению сопряжены с более высокими энергозатратами, чем аддитивные[52], и непродуктивным расходованием 50 % и более материалов, идущих в отходы производства. По контрасту, поскольку на одном и том же ЗD-принтере можно печатать самые разнообразные детали и изделия, послойный синтез позволяет организовывать массовое производство продукции под заказ на порядок дешевле, чем при традиционной, субтрактивной обработке материалов. Кроме того, при использовании технологии ЗО-печати заработная плата рабочих перестает серьезно сказываться на себестоимости продукции, а это, в свою очередь, потенциально приводит к пересмотру компаниями базовых экономических моделей организации производства.
Есть у ЗD-принтеров и другие завидные свойства и возможности. С каждым годом ширится спектр используемых материалов, допускающих послойное выращивание предмета: уже сегодня возможна трехмерная печать продуктов из самых разнообразных материалов, включая различные пластмассы и нержавеющую сталь, керамику и стекло. Современные принтеры способны даже печатать сложные механические изделия с подвижными деталями, не требующие последующей сборки. Методом ЗО-печати можно сегодня изготавливать очень многое – от мелочей типа бижутерии и конфет до технически сложных и крупногабаритных продуктов, включая ортопедические и зубные протезы, концепт-кары, строительные конструкции и персональные электронные устройства. При этом множество инициатив по созданию программных продуктов с открытыми исходными кодами и краудфандинговых проектов было направлено на резкое снижение стоимости ЗD-принтеров и открытие простым людям массового доступа к возможностям самостоятельного или под заказ изготовления продуктов методом трехмерной печати. К примеру, именно с целью сделать 3D-печать «доступной миллионам» в мае 2014 года Autodesk, компания – разработчик компьютерных средств проектирования, запустила общедоступную программную платформу Spark, призванную максимально упростить ЗО-моделирование и печать. И в том же месяце стартап M3D собрал через краудфандинговый сервис Kickstarter ни много ни мало 3,4 млн долларов на проект предельно простого в использовании базового ЗО-принтера по цене 300 долларов за штуку. Особо впечатляет производство на ЗО-принтерах деталей для реактивных истребителей. В декабре 2013 года британская транснациональная военно-промышленная компания ВАЕ Systems успешно завершила испытания новой модификации истребителя-бомбардировщика Tornado GR4 с рядом ЗО-печатных металлических компонентов в конструкции и теперь налаживает производство таких запчастей для авиационных соединений, где Tornado GR4 состоят на вооружении. Инженеры ВАЕ Systems полагают, что некоторые детали будут стоить не дороже 100 британских фунтов (около 160 долларов). В масштабах Королевских ВВС Великобритании экономический эффект от внедрения технологии производства запчастей методом ЗО-печати, согласно расчетам, составит в ближайшие четыре года 1,2 млн фунтов (около 1,9 млн долларов). Майк Мюррей, главный конструктор интегрированного фюзеляжа GR4, отмечает:
Запчасти теперь можно производить на любой базе, где захотите, при условии, что туда можно доставить эту машину [для ЗО-печати], а это значит, что можно наладить техническую поддержку любых других платформ, например боевых кораблей и авианосцев. При наличии целесообразности такие машины можно выдвигать непосредственно к линии фронта, что дает возможность обслуживать и ремонтировать боевую технику без ее традиционного отвода на тыловые оборонные предприятия[53].
Исходя из собственного четвертьвекового опыта, в GE также полагают, что подобные инструменты помогут спровоцировать новую промышленную революцию. Компания построила полноразмерный опытный цех в Цинциннати, штат Огайо, для разработки и вывода на промышленные масштабы технологий производства новых сплавов и промышленного оборудования для послойного синтеза различных компонентов продукции компании. В распоряжении GE имеется глобальная техническая проектная группа в составе 600 инженеров-конструкторов на базе 21 производственной лаборатории аддитивного синтеза. Более того, GE намерена апробировать производство деталей и компонентов методом ЗО-печати в ряде направлений своего бизнеса и, в случае успеха, развернуть их полномасштабное производство. В частности, GE Aviation планирует к 2020 году произвести методом промышленной послойной печати порядка 100 тыс. комплектующих для авиационных двигателей. В частности, методом ЗО-печати будет производиться топливная форсунка для нового турбовентиляторного двигателя CFM LEAP. В производстве медицинского оборудования инженеры-разработчики GE планируют значительно удешевить и ускорить за счет трехмерной печати производство пьезоэлектрических датчиков-преобразователей для УЗИ-оборудования. Только не надо думать, что GE полагается по всем этим направлениям исключительно на собственные силы. Напротив, компания тесно сотрудничает с инновационными проектами во всем мире с прицелом на постепенное формирование глобальной экосистемы производства высокотехнологичной продукции методом аддитивного синтеза. Главной трудностью на пути реализации этого концептуального замысла является нехватка мощностей для обеспечения потребностей как крупных, так и малых промышленных предприятий в общемировых масштабах; как только инновационных средств производства окажется в достатке, это послужит мощным толчком к развитию множества новых производств и созданию массы дополнительных рабочих мест.
Стремительно дешевеют не только ЗО-принтеры, но и промышленные роботы. Например, антропоморфный робот Baxter производства Rethink Robotics сегодня продается всего за 25 тыс. долларов США. Результатом стала волна автоматизации производственных процессов и, как следствие, повышение производительности и качества, а главное, резкое расширение возможностей для быстрой и гибкой переналадки производств. Исследовательский институт SRI International из Кремниевой долины по заказу Агентства по перспективным оборонным научно-исследовательским разработкам (DARPA)[54] при Минобороны США занимается проектированием более ловких, компактных и легковесных роботизированных манипуляторов по цене вдесятеро дешевле и потребляющих в 20 раз меньше электроэнергии, чем существующие промышленные роботы, и при этом способных надежнее справляться с более сложными задачами в динамично меняющейся обстановке.
Недорогие промышленные роботы широко используются также в Германии и Японии, испытывающих дефицит рабочих рук в силу быстрого старения населения. На самом деле мировым лидером по степени роботизации производств сегодня является именно Япония, где на фабриках и заводах «трудятся» свыше 300 тыс. роботов. Прогнозируется, что к 2025 году в стране будет задействовано свыше миллиона промышленных роботов. Учитывая, что производительность труда у робота на порядок выше, чем у человека, миллион роботов заменит 10 млн рабочих, что эквивалентно 15 % японского рынка рабочей силы по состоянию на 2012 год (65,3 млн человек по данным Всемирного банка). «Роботы – краеугольный камень конкурентного преимущества Японии на международных рынках», – считает замминистра торговли Японии по промышленной политике Шуничи Учияма.
Роботы и учатся быстрее людей, и гибче адаптируются к изменившейся ситуации, и перепрофилируются более оперативно. По этой причине на автозаводах, в частности Ford и GM, все шире используются роботизированные конвейерные линии сборки со сменной инструментальной оснасткой, предусматривающие быстрое перепрограммирование с выпуска одной модели автомобиля на выпуск другой.
52
Бет Комсток (англ. Elizabeth «Beth» Comstock, p. 1960) – подробнее см. главу 7. – Примеч. ред.
53
RAF jets fly with 3D printed parts. – BBC News, January 5th 2014.
54
Модульная платформа с поперечным расположением двигателя (с нем.) – основа для разработки новых автомобилей. Под термином «автомобильная платформа» понимается совокупность проектных, инжиниринговых и производственных решений, а также конструктивных элементов, которые используются в производстве нескольких моделей автомобилей одного класса одной или нескольких марок. – Примеч. ред.