Добавить в цитаты Настройки чтения

Страница 4 из 6



Недавним подтвержденным предсказанием стало открытие гравитационных волн с помощью детектора Advanced LIGO в сентябре 2015 г. [Аббот и др., 2016a], подтвержденное в декабре 2015 г. [Аббот и др., 2016b] и завершившееся присуждением Нобелевской премии по физике за 2017 г. Райнеру Вайссу, Барри Баришу и Кипу Торну. Естественно, что экспериментальные проверки ОТО продолжаются со все более высокой точностью.

Теперь расскажем и о других принципах ОТО.

1.2.5. Выделенная система отсчета

Ньютоновская механика построена вокруг идеи инерциальной системы отсчета. Первый закон Ньютона справедлив только в таких системах. Инерциальная система связана с телом, которое не взаимодействует с остальной частью Вселенной. Возможно ли это? На любое тело можно воздействовать с помощью механических сил, таких как сила натяжения привязанной к телу веревки[13], и четырех фундаментальных сил: электромагнитных, слабых[14], сильных[15] и гравитационных. Электромагнитные, слабые и сильные силы действуют лишь на некоторые из частиц, которые имеют ненулевые заряды соответствующего типа. Гравитационная сила, с другой стороны, является универсальной; она действует на все тела во Вселенной. Даже безмассовые частицы, такие как фотоны, подвержены силе гравитационного притяжения. Поэтому не ясно, каким образом можно обеспечить инерциальную систему отсчета в присутствии гравитационного поля.

ОТО тоже выделяет некоторые системы отсчета, но, в отличие от ньютоновской механики, они не должны быть подвержены действию никаких сил, кроме гравитационных. В таких системах отсчета справедливы все физические законы, в том числе законы специальной теории относительности (СТО). Чтобы ускорить тело в такой системе, на него надо воздействовать с помощью любой внешней силы, кроме силы тяжести. Другими словами, это системы, в которых наблюдатель свободно падает. Проиллюстрируем это на двух простых примерах.

Человек спит в своей постели. Для вящей точности укажем, что кровать неподвижна относительно земли, т. е. ее географические координаты постоянны. С ньютоновской точки зрения человек находится в состоянии покоя в приблизительно инерциальной системе отсчета. Это не совсем инерциальная система, потому что этот человек вращается (вместе с его кроватью) вокруг центра Земли, вокруг Солнца (вместе с Землей), вокруг центра Млечного Пути (вместе с Солнечной системой), падает по направлению к скоплению в созвездии Дева (вместе с галактикой Млечный Путь), к Великому аттрактору (вместе со скоплением в Деве) и т. д.[16] Но давайте не будем слишком придирчивы и назовем эту систему инерциальной. Человек находится под воздействием двух основных сил (и множества незначительных): гравитационного притяжения Земли, известного как вес, а также силы давления со стороны кровати из-за сил упругости. Эти силы компенсируют друг друга, в результате чего человек находится в состоянии покоя.

Рассмотрим ту же ситуацию с точки зрения ОТО. В этом случае выделенная система довольно сильно отличается: это система отсчета свободно падающего наблюдателя. Человек, который спит в постели, не пребывает в состоянии покоя в этой системе из-за силы давления со стороны кровати.

Второй случай – это космонавт на орбите вокруг Земли. С ньютоновской точки зрения его система никаким образом не выделенная, так как он находится под воздействием силы тяжести и его траектория искривлена. Это может быть описано двумя способами. В системе отсчета, связанной с Землей, гравитационная сила действует как центростремительная сила, в результате чего его траектория изгибается. В неинерциальной системе отсчета, связанной с космическим кораблем, сила тяготения компенсируется так называемой центробежной силой, что заставляет космонавта ощущать себя в состоянии невесомости.

Эта ситуация выглядит намного проще в рамках выделенной системы отсчета ОТО. На космонавта действует только сила тяжести, т. е. не действуют никакие негравитационные силы, и он, таким образом, покоится в данной системе отсчета. Космический корабль на орбите свободно падает на Землю, но постоянно промахивается из-за тангенциальной скорости[17]. Это основной принцип, который делает возможным полеты в космос.

Космонавт, покоясь в выделенной системе, испытывает невесомость. Тем не менее, если на него воздействовать некоторой негравитационной силой (пихнуть палкой, притянуть веревкой, дать космонавту достаточно сильный магнит и т. д.), этот космонавт будет двигаться, согласно второму закону Ньютона.

Проиллюстрируем силы, действующие в обоих подходах, на рис. 1.1 и 1.2.

1.2.6. Гравитация, инерция и приливные силы

Легко жить в мире с однородной силой тяжести. Ее просто подделать с помощью ускорения, например, ракеты или даже лифта. Внутри замкнутой ракеты или лифта никакие эксперименты не могут обнаружить различия между гравитацией и инерцией. Тем не менее этот трюк возможен только в фантастических книгах, например у Терри Пратчетта, но не в реальной жизни. В реальном мире гравитационное поле можно считать однородным лишь на очень малых масштабах, таких как ваш дом. Проблема заключается в том, что на крупных масштабах гравитационное поле Земли гораздо больше похоже на поле точечной массы, чем на однородное поле, что проявляется в виде двух эффектов: уменьшении ускорения свободного падения по мере увеличения высоты и разницы в направлениях гравитационной силы в двух разных точках на поверхности Земли. В двух диаметрально противоположных точках на Земле, например в Великобритании и в Австралии, направления гравитационных сил почти противоположны. При меньших расстояниях, например между Китаем и Японией, гравитационные силы направлены под гораздо меньшим, но все же значительным углом между ними. Второй эффект может быть имитирован с помощью расширяющейся сферической оболочки, но было бы почти невозможно имитировать различие ускорений свободного падения у пола и у потолка.

В ОТО термин «гравитация» понимается, скорее, не как притяжение к некоторым массивным телам (это обеспечивается движением выделенной системы отсчета), а как небольшие различия в направлении и величине гравитационного поля в близких точках, называемые приливными силами. Название происходит от давно известного факта, что эти силы вызывают приливы в морях и океанах Земли.

Для иллюстрации рассмотрим свободно падающий лифт – пример, придуманный самим Эйнштейном из-за отсутствия ракет в то время – с семью почти невесомыми шарами, которые исходно неподвижны относительно лифта и друг друга. Один из шаров находится в центре масс, другой – ближе к потолку прямо над первым, третий – у пола прямо под ними, а остальные четыре – у стен на высоте первого, как показано на рис. 1.3. Мы предполагаем, что стенки лифта имеют незначительный вес и их единственное назначение – защита шаров от набегающего потока воздуха и поддержка жесткости конструкции.



Каждый из шаров свободно падает вместе с лифтом, но из-за разницы в начальных положениях их движение будет несколько отличаться. Это хорошо видно в системе отсчета, привязанной к лифту. В этой системе шар 1 неподвижен; шар 2, который всегда находится в районе с немного меньшим ускорением свободного падения, дрейфует вверх; аналогичным образом шар 3 дрейфует вниз; шары от 4 до 7 имеют небольшой компонент гравитационной силы, направленной к центру[18], и дрейфуют в сторону шара 1. Следует отметить, что масштаб приливных сил на рис. 1.3 в значительной степени преувеличен.

13

Строго говоря, сила натяжения веревки представляет собой сложную комбинацию электромагнитных и сильных сил. Тем не менее объяснение этого увело бы нас в глубь квантовой механики, поэтому мы просим читателя принять это как данность.

14

Слабое взаимодействие является одним из четырех фундаментальных взаимодействий (помимо электромагнитного, гравитационного и сильного), которое работает на субатомных масштабах и отвечает за радиоактивный распад. В настоящее время рассматривается вместе с электромагнитным взаимодействием как часть более общего электрослабого взаимодействия.

15

Сильное взаимодействие отвечает за удержание частиц атомных ядер вместе. Оно действует на очень малых масштабах около 10–15 м на элементарные частицы, называемые адронами, состоящие из кварков.

16

К сожалению, в наши дни довольно трудно найти подлинный покой.

17

Тангенциальное направление является направлением в плоскости вращения, перпендикулярным радиусу. При применении к орбитальному движению это направление полета или противоположное (ретроградное).

18

По этой же причине отвес, висящий возле стенки, будет слегка отклонен по сравнению с отвесом в центре.