Добавить в цитаты Настройки чтения

Страница 12 из 24

И у нее это получилось. Созданный Розбери сборник трудов вернул чахнувшую отрасль науки к жизни и побудил множество ученых к новым исследованиям[61]. Одним из них стал Рене Дюбо, обаятельный американец французского происхождения. К тому времени он уже заявил о себе, следуя учениям Делфтской школы об экологии. Изучая почвенных микробов, он сумел получить лекарства, которые в числе других положили начало эпохе антибиотиков. Однако Дюбо считал, что с помощью этих лекарств микробов нужно приручать, а не уничтожать. Он предпочитал не называть микробов врагами человечества и избегал воинственных метафор даже в своем позднем труде о туберкулезе и пневмонии. Он всем сердцем обожал природу, а микробы – это ее часть. «В течение всей своей жизни он был уверен, что живой организм можно понять лишь через его связи со всем остальным», – писала Сьюзен Моберг, составительница его биографии[62].

Он видел, что наши микробы-симбионты важны, и его удручало то, что никто не обращал на них внимания. «Сведения о том, что микроорганизмы могут быть человеку полезны, никогда никого особо не привлекали, ведь, как правило, люди предпочитают разбираться с тем, что непосредственно им угрожает, забывая про силы природы, от которых зависит их жизнь, – писал он. – История военных действий всегда манит сильнее, чем рассказы о сотрудничестве. Чума, холера и желтая лихорадка становятся героями романов, пьес и фильмов, но никто еще не прославился, написав повесть о пользе микробов в кишечнике или желудке»[63]. Вместе со своими коллегами Дуэйном Сэвиджем и Расселом Шедлером он попытался выяснить, какую роль в организме играют микробы. Они доказали, что после уничтожения местных видов микробов их место занимают более вредные захватчики. Изучая мышей, выращенных в стерильных инкубаторах, они выяснили, что эти грызуны меньше жили и медленнее росли, имели предрасположенность к стрессу и инфекционным заболеваниям, а их пищеварительная и иммунная системы не могли нормально развиваться. «Некоторые виды микробов играют важнейшую роль в развитии и физиологии обычных животных и людей», – писал он[64].

Однако Дюбо понимал, что это только начало. «Очевидно, что [уже известные бактерии] являются лишь небольшой частью всего местного сообщества микробов, причем не самой важной», – писал он. Все остальные – что-то около 99 % от всех наших микробов – наотрез отказывались расти в лабораторных условиях. Это «некультурное большинство» обескураживало. Несмотря на все исследования со времен Левенгука, микробиологи не знали ровным счетом ничего о существах, которых, по идее, должны изучать. Мощные микроскопы не помогали. Разные методы культивации микробов тоже не помогали. Нужен был другой подход.

В конце 1960-х молодой американец Карл Везе начал работу над проектом весьма узкой направленности. Проект заключался в сборе различных видов бактерий и анализе молекулы 16S рРНК, присутствовавшей в каждой бактерии. Ни один из его коллег не представлял, зачем это нужно, так что конкурентов у Везе не было. «В этом забеге участвовала лишь одна лошадь», как он потом говорил[65]. Забег дорого ему обходился, медленно продвигался и был довольно опасным – для него требовалось немалое количество жидких радиоактивных веществ. Вместе с тем он оказался революционным.

В те времена для установления родственных связей между видами биологи полагались исключительно на физические черты особей. Чтобы понять, кто кому приходился родичем, их сравнивали по размеру, форме и устройству организма. Везе же считал, что молекулы жизни – ДНК, РНК и белки, без которых не обходится ни одно живое существо, – помогут ему лучше справиться с этой задачей. Со временем в этих молекулах накапливаются изменения, так что у близкородственных видов они более похожи, чем у состоящих в дальнем родстве. Везе был убежден, что, сравнив нужную молекулу у достаточного количества разных видов бактерий, он прольет свет на все ветви и стволы древа жизни[66].

Он остановился на молекуле 16S рРНК, за которую отвечает одноименный ген. Она составляет часть производящего белки аппарата, имеющегося у всех живых организмов, а Везе как раз это и было нужно. К 1976 году он составил описание 16S рРНК около 30 разных видов микробов. В июне того года он занялся видом, который вскоре изменил его жизнь – а также биологию.

Вид этот ему предоставил Ральф Вулф – к тому времени уже эксперт по малоизученной группе микробов, называемых метаногенами. Для жизни этим крошкам требовались в основном лишь водород и углекислый газ, которые они превращали в метан. Обитали они в болотах, океанах и человеческом кишечнике – Methanobacterium thermoautotrophicum, что прислал Вулф, была найдена в горячих канализационных отходах. Везе, как и все остальные, решил, что это всего лишь очередная бактерия, хоть и со странными привычками. Однако, взглянув на ее 16S рРНК, он удивился – молекула оказалась какой-то небактериальной! Есть разные версии того, насколько полно он осознал свое открытие, как отреагировал на него и запросил ли повторный эксперимент. Однако одно мы знаем точно: к декабрю его научная группа провела секвенирование еще нескольких метаногенов и заметила в каждом из них те же особенности. Вулф делится воспоминаниями о словах Везе: «Эти штуки и бактериями-то не являются».

Результаты исследования Везе опубликовал в 1977 году. В своей статье он назвал метаногенов архебактериями – позже их стали называть археями[67]. По словам Везе, они были не бактериями со странностями, а представителями совершенно новой формы жизни. Утверждение было действительно шокирующим. Везе в прямом смысле вытащил этих микробов из навозной кучи и поставил на один уровень с вездесущими бактериями и могучими эукариотами! Как будто все вокруг разглядывали карту мира, а Везе, не говоря ни слова, разложил перед ними еще треть карты, прежде скрытую.

Разумеется, без шумной критики не обошлось, причем даже от других ученых-бунтарей. Журнал Science позже окрестил его «покрытым шрамами эволюционером микробиологии», и шрамы эти остались у него до конца жизни, завершившейся в 2012 году[68]. Сегодня его наследие не вызывает сомнений. Он оказался прав: археи действительно не являются бактериями. И что еще более важно, разработанный им подход – сравнение генов для выяснения степени родства между видами – в современной биологии является одним из главных[69]. Его методы позволили другим ученым – например, его давнему другу Норману Пейсу – начать исследовать мир микробов по-настоящему.

В 1980-х годах Пейс принялся изучать рРНК архей, населяющих места с чрезвычайно высокой температурой. Особенно ему понравилась Октопус Спрингс, глубокая котловина с голубой водой, температура которой достигала аж 91 градуса по Цельсию. В этом источнике было очень много неизвестных микробов, предпочитающих погорячее, – настолько много, что их скопления образовывали видимые розовые волокна. Пейс вспоминает, как прочел об этом источнике и кинулся в лабораторию с криком: «Эй, ребята, вы только взгляните! Их же там килограммы! Хватайте ведро и поехали за ними». Один из коллег возразил: «Ты ведь даже не знаешь, что это за организм».

И Пейс ответил: «Ничего. Просеквенируем и узнаем».

Он мог бы вполне прокричать: «Эврика!» До Пейса дошло: благодаря методам Везе больше не нужно было выращивать микробов, чтобы их изучать! Да чего уж там, даже видеть их было необязательно. Можно было просто вытащить из среды ДНК и РНК и секвенировать их. Так Пейс мог узнать, что там обитает и где оно находится на микробиологическом древе жизни, – биогеография и эволюционная биология в одной пробирке. «Так мы и отправились с ведерком в Йеллоустон», – рассказывает он. В водах этого «спокойного, прекрасного и смертельного» места команда Пейса нашла два вида бактерий и один вид архей, неизвестных до этого науке. Результаты исследования увидели свет в 1984 году[70] – впервые ученым удалось открыть новый организм только по его генам. И тот первый раз был не последним.

61

Дуэйн Сэвидж замечательно описал все последующие исследования (Savage, 2001).

62

Биография Рене Дюбо, написанная Моберг, описывает его жизнь в красочных подробностях (Moberg, 2005).

63





Dubos, 1987, с. 62.

64

Dubos, 1965, сс. 110–146.

65

Цитата из интервью для The New York Times (Blakeslee, 1996). Чтобы узнать больше о революционных открытиях Везе, см. One Plus One Equals One Джона Арчибальда (Archibald, 2014) и The New Foundations of Evolution Яна Саппа (Sapp, 2009).

66

Сама идея принадлежит не Везе. Фрэнсис Крик, один из соавторов открытия двойной спирали ДНК, предложил похожую стратегию в 1958 году, а Лайнус Полинг и Эмиль Цукеркандль предложили использовать молекулы в качестве «свидетельств эволюционной истории» в 1965 году.

67

Молодой ученый Джордж Фокс работал вместе с Везе и был соавтором его главного труда (Woese, Fox, 1977).

68

Morell, 1997.

69

Этот подход, известный как молекулярная филогенетика, разбросал по древу жизни множество групп, которые раньше считались родственными из-за внешнего сходства, и объединил существ, которые, несмотря на совершенно разную внешность, оказались родичами. Также благодаря ему было окончательно доказано, что митохондрии – те самые крохотные овальчики, вырабатывающие энергию для клеток, – когда-то были бактериями. У них были собственные гены, явно напоминающие бактериальные. То же относится и к хлоропластам, позволяющим растениям использовать энергию солнца в процессе фотосинтеза.

70

Йеллоустонское исследование: Stahl et al., 1985. Пейс применил ту же методику к бактериям в организме глубоководных червей. Результаты были опубликованы на год раньше, однако тогда не было открыто ни одного нового вида.