Добавить в цитаты Настройки чтения

Страница 14 из 17

В предыдущей главе я пытался показать, что многообразие форм жизни связано определенным образом со множеством возможных компромиссов между тенденциями обеспечения собственного гомеостазиса и стремлением реализовать обобщенный принцип минимума диссипации. Возникает ситуация, которая чем-то напоминает движение по поверхности Парето. Как известно, это многообразие замечательно тем, что увеличение значения одного из критериев сопровождается уменьшением (строго говоря, неувеличением) значений другого или других: на нем нельзя добиться одновременного роста значений всех критериев.

Примечание. Множество Парето играет важную роль в теории многокритериальной оптимизации. Предположим, что мы стремимся найти такую стратегию (вектор х), которая наилучшим образом отвечала бы нашим стремлениям увеличить значения критериев – скалярных функций φ1 (х), φ2 (х) … – Тогда, задавая некоторое значение вектору х = х1 в пространстве критериев мы получаем некоторую точку Р(х1) с компонентами φ1 (х1), φ2 (х1) … Предположим теперь, что мы нашли такую стратегию х, для которой

Очевидно, что теперь стратегию х1 мы можем уже не рассматривать – оно по всем критериям хуже х^. Значит, нас могут интересовать только те точки Р(х^) в пространстве критериев, для которых нельзя найти другой точки Р(х), такой, чтобы по всем критериям φi (х^) ⩽ φi (х). Совокупность всех подобных точек Р в пространстве критериев и называется поверхностью (или множеством) Парето.

Появление эукариотов, которые на определенном этапе сменяют прокариотов и становятся носителями дальнейшего развития жизни, служит иллюстрацией «паретовских компромиссов»: уменьшение стабильности отдельного организма, появление индивидуальной смертности сопровождались увеличением эффективности в использовании внешней энергии, что открывало совершенно новые возможности для развития жизни. Именно потеря бессмертия позволила включить в единый процесс развития новые механизмы эволюции. С момента появления эукариотов начинается быстрое совершенствование видов и стремительный рост их разнообразия.

Однако об этом периоде развития Земли мы знаем мало. Но нет сомнений в том, что он был одной из важнейших страниц истории нашей планеты. Появление эукариотов (и современных прокариотов) на авансцене жизни привело к возникновению генетического кода или, во всяком случае, было тесно связано с ним: без него ничто смертное не могло бы появиться в биосфере. Появление существ, индивидуальная жизнь которых конечна, стало возможным лишь при наличии специальной формы памяти, обеспечивающей реализацию принципа наследственности. И она возникла. Это был генетический код, с помощью которого запоминалась и передавалась необходимая наследственная информация. Напомню, что сейчас алфавит генетического кода состоит из четырех букв. Ничему не противоречит гипотеза о том, что в начале истории земной жизни могли быть и другие его варианты, но в наших земных условиях – подчеркну, в конкретных условиях земной жизни – сложившаяся форма передачи наследственной информации оказалась, вероятно, наиболее стабильной. Она позволила более надежно воспроизводить себе подобных, сохранив при этом оптимальную (для тех времен) изменчивость – «уровень мутагенеза». Генетическая память резко интенсифицировала весь эволюционный процесс.

Примечание. Я думаю, что генетический код, как и все гениальные «находки природы», возник и утвердился в результате жесточайшей конкуренции и естественного отбора. Живые существа, наделенные другими способами кодирования наследственной информации, просто не выдержали бы конкуренции и погибли. Разумеется, высказанное мнение не более чем гипотеза. Никаких подтверждений для него мы не знаем. Но оно не противоречит изложенным выше принципам самоорганизации материи и согласуется с ними. Если жизнь возникла (или существует) и в других мирах, в других частях Вселенной, то вовсе не обязательно, что ее генетический код, т. е. структура ее наследственной памяти, будет такой же, как на Земле. В других условиях более надежной может оказаться иная форма хранения и передачи наследственной информации. Возникновение наследственной памяти, взаимосвязанное с появлением смерти и редупликации, т. е. способности воспроизводить себе подобных, означало появление качественно новых возможностей для расширения многообразия организационных структур. В самом деле, конечность существования отдельного организма обеспечивает высокий уровень изменчивости и, следовательно, адаптации к изменяющимся условиям и «открытие» возможностей более эффективно совершенствовать способы освоения внешней энергии.

Особую роль в эволюции жизни играет история развития нервной системы. Говоря о нервной системе, мы неизбежно вступаем в область кибернетики или, точнее, теории управляющих систем. Ведь вместе с жизнью возникает целенаправленная деятельность, прежде всего стремление сохранить гомеостазис.





Мы уже не раз употребляли понятие «гомеостазис», и настало время уточнить его смысл, тем более что это понятие очень широкое. В медицине и биологии говорят о внутреннем равновесии и внутренней стабильности организма или об устойчивости живой системы, например популяции. Но не менее важна и оценка внешних характеристик, т. е. характеристик окружающей среды, их соответствия возможностям функционирования живой системы. Этот контекст более важен для данной работы, и именно в нем мы и будем использовать в дальнейшем понятие гомеостазиса.

Условимся называть границей области гомеостазиса (или просто гомеостазиса) данной живой системы множество (линию, поверхность, гиперповерхность) в пространстве параметров внешней среды, отделяющее область их значений, внутри которой существование живой системы возможно, от остального пространства. Переход из области гомеостазиса через ее границу означает прекращение существования живой системы.

Когда мы говорим о тенденции к сохранению гомеостазиса, мы имеем в виду стремление живого организма расширить границы своего существования. Это может быть достигнуто двумя путями. Во-первых, организм может так изменить свои собственные характеристики, чтобы область его гомеостазиса расширилась. Во-вторых, он, чтобы отодвинуть опасную границу, может изменить саму внешнюю среду, ее параметры. Эволюция живой природы использует, разумеется, обе эти возможности. Другими словами, живые существа стремятся не только сами адаптироваться к окружающей среде, но и изменять эту среду так, чтобы ее характеристики в наибольшей степени соответствовали их возможностям существования.

Чтобы обеспечивать свой гомеостазис, живое существо должно обладать целым рядом свойств. Во-первых, оно должно быть способным оценивать свое положение по отношению к границе гомеостазиса. Но для этого необходимы специальные устройства. В физиологии они называются рецепторами. Если использовать терминологию теории управления, то мы должны будем сказать, что для сохранения своего гомеостазиса живое существо должно обладать специальной информационной системой. В простейшем случае рецепторы – это датчики (как гироскоп у автопилота) информирующие организм о его состоянии и состоянии окружающей среды. Далее, полученная информация должна перерабатываться и оцениваться. Наконец, на основе проведенного анализа должно приниматься определенное решение. Все эти функции и реализует нервная система, которую мы с полным правом может назвать системой управления организма, ибо все перечисленные функции присущи любой системе управления.

Примечание. Следует заметить, что нервная система – это не единственная управляющая система, которой обладает организм. Функции управления в достаточной степени рассредоточены. К числу управляющих относится, например, эндокринная система. Но нервная система, конечно, занимает в жизнедеятельности организма совершенно особое место.