Страница 2 из 17
Петер Пауфлер (Peter Paufler) и его коллеги из Дрезденского технического университета обнаружили углеродные нанотрубки в дамасской сабле 17 века при изучении ее микроструктуры (Nature, 2006, 444, 286). Наиболее интригующим являлось то, что нанотрубки были инкапсулированы в линейные структуры, образованные карбидом железа. По мнению учёных, такая организация материала клинка могла обуславливать механическую прочность и остроту Дамасских мечей.
Европейцы приписывали Дамасским клинкам волшебные свойства. Только волшебством можно было объяснить столь острую заточку меча, способного разрезать шелковый платок, просто падающий на лезвие, и одновременно способность клинка разрубать оружие и доспехи из менее качественной стали, не теряя своей остроты.
Проблема, с которой сталкивались средневековые оружейники, заключалась в том, как получить одновременно жёсткую и ковкую сталь. Большое количество углерода сделает сталь твердой, но хрупкой, малое содержание углерода приведет к образованию более ковкого материала, который, однако, будет настолько мягок, что не сможет образовать жёсткой режущей кромки при заточке. Клинки дамасской стали ковали из небольших по размеру слитков железа, содержавших 1,6–1,7 % углерода. Эти слитки [их еще называют вутц (wootz)] производились в Индии, экспортировались в Дамаск, где опытные оружейники превращали их в клинки.
Сканирующий электронный микроскоп позволяет разглядеть нанотрубки в дамасском клинке (рисунок из Nature, 2006, 444, 286).
Сталь, содержащая такое количество углерода, обычно образует пластины цементита (Fe3C), который в свою очередь делает сталь ломкой. Однако в ходе выплавки дамасской стали при температуре около 800 градусов Цельсия в исходный материал вносили небольшое количество добавок, представляющих собой элементы первого ряда переходных металлов (например: ванадий, хром, марганец, кобальт и никель), вольфрам и некоторые редкоземельные элементы. Совместное и одновременное внесение этих добавок в сталь приводило к тому, что отдельные пластины цементита объединялись, формируя его нановолокна. Все это давало клинкам прочность, ковкость и характерный волнообразный рисунок микроструктуры. Искусство ковки дамасской стали было потеряно к XVIII веку благодаря истощению запасов сырьевой базы как для железосодержащих руд, так и для легирующих добавок.
Ранее проводимые исследования микроструктуры дамасской стали показывали на наличие нановолокон цементита в материале. Сейчас группа Пауфлера обнаружила наличие нанотрубок в стали. Это открытие было сделано следующим образом: небольшой образец материала клинка был корродирован действием плавиковой кислоты, после чего материал изучался с помощью сканирующего электронного микроскопа с высоким разрешением.
Нанотрубки могли образоваться в результате добавок некоторых растительных ингредиентов ещё на стадии образования вутца. Ученые предполагают, что образованию углеродных нанотрубок могла способствовать древесина Cassia auriculata и листья Coltropis gigantean. Таким образом, эмпирически оптимизируя процесс выплавки стали и ковки клинка, средневековые мастера получили наноматериалы ещё несколько сотен лет назад, правда, естественно, ответить на вопрос: «Благодаря чему клинок, скованный на Востоке, превосходит свойствами клинок, скованный на Западе», – металлурги и алхимики и Саладина, и европейских правителей не могли, и переход на древесный уголь из других сортов древесины привёл в конечном итоге к «утере» секрета дамасской стали.
Пожалуй, учитывая все обстоятельства, самый приятный из всех химических сюрпризов произошел в 1669 году, когда алхимик Хенниг Бранд попытался получить золото, нагревая мочу с песком.
Спрашивается – зачем он взял такие неожиданные исходные вещества для трансмутации? Ответ прост: принцип подобия, который использовали алхимики, в те времена касался не только растворимости, а чуть более, чем всего – запахов, вкуса, внешнего вида. Исходя из принципа подобия, теоретической базой для подбора условий проведения эксперимента послужило то, что и золото, и моча отличаются одинаковым цветом. Конечно же, Хенниг Бранд не смог выпарить золото из мочи, но в историю химии вошел как первооткрыватель нового элемента – фосфора.
Открытие удалось сделать благодаря тому, что помимо мочевины и мочевой кислоты моча содержит метафосфат натрия, а при высокой температуре её органические компоненты обугливаются до углерода, который при нагревании может восстановить фосфор из фосфата. Бранд хранил свой метод получения нового вещества в тайне (из-за свечения считая его облегчённой версией философского камня), но в 1680 году независимо от него Роберт Бойль опубликовал рецепт получения фосфора по такой же методике – при нагревании мочи с песком. Специалисты по химии фосфора и фосфорорганических соединений до сих пор уверены в том, что главное достижение алхимии – тот самый эксперимент Бранда и позднее Бойля, который позволил открыть новый (тогда) и уникальный (до настоящего времени) химический элемент.
В наши дни фосфор производится путем восстановления фосфатов (например, фосфатов кальция – апатитов) с песком и коксом в электрической печи при температуре около 1200 °C. Основной компонент песка – диоксид кремния – вступает в реакцию с фосфатом, образуя оксид фосфора P2O5, ну а входящий в состав кокса углерод восстанавливает P2O5 до элементарного фосфора.
Свою роль случайности сыграли и при разработке химических процессов, связанных с фотографией. К 1835 году француз Луи Дагер разработал такое светочувствительное устройство, как покрытая серебром и обработанная парами йода медная пластина. Дагер подверг пластинку действию света и положил её на шкаф, а когда через некоторое время он вернулся к ней, на пластинке проявилось изображение. Расследование показало, что в шкафу лежал разбитый ртутный термометр, и пары ртути проявили изображение.
В 1837 году Дагер запатентовал фотографическую систему, получившую название «дагеротип», для получения изображения с помощью которой необходимо было подвергнуть металлическую пластинку воздействию света, обработать пластинку парами ртути и закрепить его соленой водой. Метод Дагера, ставший началом современной фотографии, был небезопасен для здоровья, долог и трудоемок, но по тем временам дагеротипы были прорывом в области создания изображений.
Благодаря счастливой случайности был открыт и состав нержавеющей стали. Примерно в 1910 году британский металлург Гарри Брирли (Harry Brearley) пытался создать новый сплав для ружейных стволов, способный выдержать стрельбу патронами большей мощности, однако каждый из образцов полученных сплавов проваливал тесты, не обладая достаточной прочностью, и Брирли свалил все неудачные образцы в сыром углу своей лаборатории, где те лежали и ржавели.