Добавить в цитаты Настройки чтения

Страница 37 из 39



В процессе газообмена между организмом и атмосферным воздухом большое значение имеет вентиляция легких, обеспечивающая обновление состава альвеолярного газа. Интенсивность вентиляции зависит от глубины и частоты дыхания. Количественным показателем вентиляции легких служит минутный объем дыхания, определяемый как произведение дыхательного объема на число дыханий в минуту.

Легочная вентиляция обеспечивается работой дыхательных мышц. Эта работа связана с преодолением эластического сопротивления легких и сопротивления дыхательному потоку воздуха (неэластическое сопротивление). При МОД, равном 6–8 л/мин, на работу дыхательных мышц расходуется 5–10 мл/мин О2. При физических нагрузках, когда МОД достигает 150–200 л/мин, для обеспечения работы дыхательных мышц требуется уже около одного литра О2. Высокая кислородная стоимость дыхания невыгодна для организма, так как О2 не может использоваться для полезной работы.

Из воздуха альвеол О2 переходит в кровь, а в него поступает СО2. Поэтому газовый состав их воздуха в процессе вентиляции легких неодинаков (табл. 4).

Таблица 4

Состав воздуха (в %) при спокойном дыхании

Выдыхаемый воздух состоит из смеси альвеолярного и воздуха вредного пространства, по составу мало отличающегося от атмосферного. Поэтому выдыхаемый воздух содержит больше О2 и меньше СО2 по сравнению с альвеолярным. Назначение легочной вентиляции состоит в поддержании относительного постоянства уровня парциального давления О2 и СО2 в альвеолярном воздухе. При атмосферном давлении 760 мм рт. ст. рО2 в нем равно 159 мм рт. ст. и рСО2 – 0,2 мм рт. ст., а в альвеолярном воздухе – 102 мм рт. ст. и 40 мм рт. ст. соответственно. Характер легочной вентиляции определяется градиентом парциального давления этих газов в различных отделах дыхательных путей.

10.2. Обмен газов в легких и их перенос кровью

Переход О2из альвеолярного воздуха в кровь и СО2из крови в альвеолы происходит только путем диффузии. Никакого механизма активного транспорта газов здесь не существует. Движущей силой диффузии являются разности (градиенты) парциальных давлений (напряжений) О2и СО2по обе стороны альвеолярно-капиллярной мембраны или аэрогематического барьера. Напряжение газов в различных средах представлено в табл. 5.

Таблица 5

Напряжение О2и СО2при спокойном дыхании воздухом (мм рт. ст.)

Кислород и углекислый газ диффундируют только в растворенном состоянии, что обеспечивается наличием в воздухоносных путях водяных паров, слизи и сурфактантов. В ходе диффузии через аэрогематический барьер молекулы растворенного газа преодолевают большое сопротивление, обусловленное слоем сурфактанта, альвеолярным эпителием, мембранами альвеол и капилляров, эндотелием сосудов, а также плазмой крови и мембраной эритроцитов.

Диффузионная способность легких для кислорода очень велика. Это обусловлено огромным числом (сотнями миллионов) альвеол и большой их газообменной поверхностью (около 100 м2), а также малой толщиной (около 1 мкм) альвеолярно-капиллярной мембраны. Диффузионная способность легких у человека примерно равна 25 мл О2 в 1 мин в расчете на 1 мм рт. ст. градиента парциальных давлений кислорода. Учитывая, что градиент рО2 между притекающей к легким венозной кровью и альвеолярным воздухом составляет около 60 мм рт. ст., этого оказывается достаточно, чтобы за время прохождения крови через легочный капилляр (около 0,8 с) напряжение кислорода в ней успело уравновеситься с альвеолярным рО2.





Диффузия СО2 из венозной крови в альвеолы даже при сравнительно небольшом градиенте рСО2 (около 6 мм рт. ст.) происходит достаточно легко, так как растворимость СО2 в жидких средах в 20–25 раз больше, чем у кислорода. Поэтому после прохождения крови через легочные капилляры рСО2 в ней оказывается равным альвеолярному и составляет около 40 мм рт. ст.

Дыхательная функция крови прежде всего обеспечивается доставкой к тканям необходимого им количества О2. Кислород в крови находится в двух агрегатных состояниях: растворенный в плазме (0,3 об.%) и связанный с гемоглобином (около 20 об.%) – оксигемоглобин.

Отдавший кислород гемоглобин считают восстановленным, или дезоксигемоглобином. Поскольку молекула гемоглобина содержит 4 частицы гема (железосодержащего вещества), она может связать четыре молекулы О2. Количество О2, связанного гемоглобином в 100 мл крови, носит название кислородной емкости крови и составляет около 20 мл О2. Кислородная емкость всей крови человека, содержащей примерно 750 г гемоглобина, приблизительно равна 1 л.

Каждому значению рО2 в крови соответствует определенное процентное насыщение гемоглобина кислородом. Кривую зависимости процентного насыщения гемоглобина кислородом от величины парциального напряжения называют кривой диссоциации оксигемоглобина (рис. 21). Анализ хода этой кривой сверху вниз показывает, что с уменьшением рО2 в крови происходит диссоциация оксигемоглобина, т. е. процентное содержание оксигемоглобина уменьшается, а восстановленного – растет.

Рис. 21. Кривая диссонации оксигемоглобина в крови человека в покое: А – содержание HbO2, в артериальной крови, В – то же в венозной крови

В различных условиях деятельности может возникать острое снижение насыщенности крови кислородом – гипоксемия. Причины гипоксемии весьма разнообразны. Она может развиваться вследствие снижения рО2 в альвеолярном воздухе (произвольная задержка дыхания, вдыхание воздуха с пониженным рО2), при физических нагрузках, а также при неравномерной вентиляции различных отделов легких.

Образующийся в тканях СО2 диффундирует в тканевые капилляры, откуда переносится венозной кровью в легкие, где переходит в альвеолы и удаляется с выдыхаемым воздухом. Углекислый газ в крови (как и О2) находится в двух состояниях: растворенный в плазме (около 5 % всего количества) и химически связанный с другими веществами (95 %). СО2 в виде химических соединений имеет три формы: угольная кислота (Н2СО3), соли угольной кислоты (NaHCO3) и в связи с гемоглобином (HbHCO3).

В крови тканевых капилляров одновременно с поступлением СО2 внутрь эритроцитов и образованием в них угольной кислоты происходит отдача О2 оксигемоглобином. Восстановленный Hb легко связывает водородные ионы, образующиеся при диссоциации угольной кислоты. Таким образом, восстановленный Hb венозной крови способствует связыванию СО2, а оксигемоглобин, образующийся в легочных капиллярах, облегчает его отдачу.

В состоянии покоя с дыханием из организма человека удаляется 230–250 мл СО2 в 1 минуту. При удалении из крови СО2 из нее уходит примерно эквивалентное число ионов водорода. Таким порядком дыхание участвует в регуляции кислотно-щелочного состояния во внутренней среде организма.

Обмен газов между кровью и тканями осуществляется также путем диффузии. Между кровью в капиллярах и межтканевой жидкостью существует градиент напряжения О2, который составляет 30–80 мм рт. ст., а напряжение СО2 в интерстициальной жидкости на 20–40 мм рт. ст. выше, чем в крови. Кроме того, на обмен О2 и СО2 в тканях влияют площадь обменной поверхности, количество эритроцитов в крови, скорость кровотока, коэффициенты диффузии газов в тех средах, через которые осуществляется их перенос.