Добавить в цитаты Настройки чтения

Страница 43 из 49

Даже весьма далекие от практики научные исследования далекого космоса и микромира оказывают влияние на технику, медицину и другие, «более близкие к жизни» разделы науки не только практическим использованием открываемых принципиально новых явлений, но и тем, что в процессе таких исследований, выполняемых, как правило, в экстремальных, предельных по своим параметрам условиях, разрабатываются новые приборы, оригинальные методы и неожиданная технология, которые затем также находят широкое практическое применение. Так, физика элементарных частиц содействовала быстрому внедрению в электротехнику сверхпроводящих магнитов и связанной с этим технологии сверхнизких температур, помогая резко снизить потери электроэнергии на ненужное, а во многих случаях и очень вредное нагревание питаемых электрическим током устройств. В исследованиях реакций рождения и распада элементарных частиц, где в поисках нужных процессов приходится просматривать десятки тысяч, а то и миллионы фотографий отдельных событий, были впервые разработаны методы автоматической обработки огромных массивов экспериментальной информации. Для этого впервые были использованы мощные ЭВМ, которые по заданным признакам с большой скоростью сортируют и расшифровывают микрофотографии. Теперь эти методы применяются при аэрофотосъемке, при наблюдениях за земной поверхностью со спутников и во многих других областях. Как показал экономический анализ, разработки, выполненные в связи с исследованиями по физике элементарных частиц, оказали влияние даже на такие далекие отрасли, как сталелитейное дело и железнодорожный транспорт. Полученная прибыль окупила все затраты на опыты с частицами.

Огромный экономический эффект дали космические исследования, которые на первом этапе выглядели тоже «чисто научными».

Как видим, практический опыт убедительно говорит о том, что «чистая наука» жизненно необходима и занятие ею — достойное и важное дело. В научно-техническом прогрессе она, образно говоря, играет роль генератора и ускорителя. Поэтому можно с уверенностью сказать, что человечество никогда не утратит к ней интереса. Наука, изучающая глубинные проблемы окружающей природы, не золушка, которую терпят из милости и сострадания, а принцесса, способная одарить человечество фантастическим богатством. Говоря словами Циолковского, «фундаментальные изыскания имеют чрезвычайно осязаемую, так сказать, хлебную важность для общества».

В недалекой перспективе — создание работающих при комнатной температуре сверхпроводников, по которым электрический ток, не ослабевая, может циркулировать в течение многих суток, сверхдальняя космическая связь на нейтрино, создание мощных генераторов гравитационного поля и множество других вещей. Но самое важное в том, что продвижение в глубь материи связано с открытием и освоением новых источников энергии взамен постепенно истощающихся старых. И если не выполнять исследований впрок, с дальним прицелом, то может случиться, что имеющихся источников просто не хватит для того, чтобы овладеть новыми, — ведь спуск по ступенькам структурной лестницы в недра вещества связан с затратами все большей и большей энергии. И здесь у «чистой науки» есть уже несколько многообещающих заделов. Один из них касается практического использования больших ускорителей частиц, которые часто называют «пирамидами XX века», подчеркивая этим их дорогую цену и кажущуюся практическую бесполезность.

Ускорители — фабрики энергии

Производство энергии в мире за последние десятилетия возрастало в среднем на пять процентов в год. Если этот темп сохранится, то энергетические потребности человечества во второй половине следующего века в пятьдесят — сто раз превзойдут современный уровень. В то же время запасы наиболее энергоемких и удобных для использования видов органического топлива, нефти и газа, в основном будут исчерпаны уже в сравнительно недалеком будущем. Лучше обстоит дело с каменным углем. При современных темпах развития экономики его хватит по крайней мере на несколько сотен лет. Но в этом случае придется сжечь значительную часть атмосферного кислорода. Экологические последствия будут, по-видимому, катастрофическими. Конечно, есть еще солнечные батареи, ветряные двигатели, энергия, запасенная в земной коре, в морях и океанах. Все это — важное подспорье, но полностью удовлетворить потребности экономики таким путем нельзя.

Единственный выход — использование энергии атома. Атомные электростанции уже сегодня дают весьма заметный вклад в производство электроэнергии. В некоторых странах — например, во Франции и ФРГ, где мало нефти и угля, — он приближается к 50 — 70 процентам. Предполагается, что к концу столетия мощность атомной энергетики в мире возрастет по крайней мере втрое.





Радикальным решением энергетической проблемы, освобождающим нашу планету от забот об источниках энергии по крайней мере на ближайшую тысячу лет, был бы переход к «термояду» — использованию энергии термоядерного синтеза. В воде морей и океанов содержатся практически неограниченные запасы необходимого для этого сырья — атомов тяжелого водорода — дейтерия. Однако перед физиками здесь стоят еще чрезвычайно трудные научно-технические задачи, и пройдет очень много времени, прежде чем будут созданы экономически выгодные термоядерные реакторы.

Сегодня атомную энергию получают с помощью реакции деления ядер урана. Именно эта реакция «работает» на атомных электростанциях, приводит в движение подводные лодки и ледоколы. Запасы ядерного горючего, урана, на нашей планете хотя и не столь велики, как запасы тяжелого водорода, тем не менее вполне достаточны для того, чтобы в течение столетий служить надежной основой земной энергетики. Но вот что плохо: топливом для современных атомных реакторов может служить не весь уран, а только весьма редкая его разновидность — изотоп с атомным весом 235, доля которого в природном уране составляет менее процента. Остальная часть урана — а это ни много ни мало более девяноста девяти процентов всей его добычи! — идет пока на склады и сохраняется до лучших времен, когда будут созданы реакторы, способные использовать весь уран, оба его изотопа 235 и 238, которых много. В опытном порядке подобные системы уже действуют в нашей стране и за рубежом. Они 'перерабатывают уран в новый элемент — плутоний, который, как и уран 235, является хорошим топливом для «атомных печей». К сожалению, переработка в плутоний происходит пока еще довольно медленно и обходится дорого.

Есть еще один путь для переработки неиспользуемого урана 238 в плутоний — с помощью установки, которая является гибридом мощного ускорителя частиц и уранового реактора. Представьте себе большой кусок урана, скажем, кубический метр в объеме, — мишень, в которую бьет пучок протонов, ускоренных до высоких энергий. Сталкиваясь с ядрами, энергичные протоны дробят их на множество протонов и нейтронов — расшибают в веер нуклонных «брызг». Родившиеся при этом частицы дробят следующие ядра и так далее, до тех пор, пока их энергия не станет такой маленькой, что они уже будут не способны расколоть атомное ядро. В урановой мишени образуется мощный каскад, лавина постепенно замедляющихся частиц. Как в горах, когда сорвавшийся камень сбивает несколько следующих, те сбивают другие — и грохочущий веер камней летит вниз!

Часть образовавшихся в каскаде и постепенно замедлившихся нейтронов захватывается ядрами урана, и в результате образуется плутоний. Другие нейтроны делят ядра урана, как в обычном атомном реакторе. При этом в мишени выделяется так много энергии, что ее достаточно для того, чтобы возместить затраты электростанции на ускорение протонов, а образовавшийся плутоний можно «сжечь» с выделением большого количества энергии либо в самой мишени, либо в других атомных реакторах.

Это так называемый электроядерный метод получения атомной энергии, или, как говорят физики, «электрояд». Ускоритель становится фабрикой энергии. Скорость наработки плутония здесь во много раз больше, чем в реакторах деления, работающих без «подсветки» пучком ускорителя.