Добавить в цитаты Настройки чтения

Страница 32 из 49

Не зафиксировано таких излучений и в космосе, где они должны были бы рождаться на стыке зон вещества и антивещества, где перемешиваются пыль и газы, состоящие из частиц и античастиц. К этому надо добавить, что изучение состава космических лучей также дало отрицательные результаты. Эти лучи содержат протоны и ядра различных, легких и тяжелых, элементов, но в них нет большого числа антипротонов и антиядер, как это должно было бы быть, если бы острова вещества и антивещества были бы представлены в космосе на равных правах. В потоке космических частиц один антипротон приходится на несколько тысяч протонов. Это вторичные антипротоны, юнцы, родившиеся из обычного вещества в результате ядерных реакций космических лучей с облаками межзвездного газа.

Таким образом, либо антимиры находятся где-то далеко — за пределами видимости, достижимой с помощью имеющихся в нашем распоряжении приборов, — либо антивещества во Вселенной очень мало.

Если антимиры далеко, то их открытие — лишь вопрос времени. Однако это кажется маловероятным, поскольку наше положение в космосе рядовое, и было бы трудно объяснить, почему выпадение вещества и антивещества в раздувшейся Вселенной происходило так неравномерно. Остается загадкой, как в бурлящем, интенсивно перемешиваемом веществе юной Вселенной могли бы образоваться обширные неоднородности с излишком частиц или античастиц. С другой стороны, если антивещества в космосе мало, сразу же возникает вопрос: куда же оно делось? В обоих случаях появляются сомнения в правильности всей космологической картины.

По-видимому, все дело в маленьком различии скоростей распадов частиц и античастиц. Еще двадцать лет назад американские физики наблюдали распады странных частиц, К-мезонов, которые указывали на несколько различное поведение вещества и антивещества. Хотя нарушающие симметрию распады происходят крайне редко и только у К-мезонов, во всех других случаях частицы и античастицы ведут себя совершенно одинаково, теория «великого объединения», о которой шла речь в предыдущей главе, предсказывает, что в условиях сверхвысоких температур и давлений, господствовавших внутри огненного шара раздувшейся Вселенной, симметрия частиц и античастиц должна сильно нарушаться и скорости распадов всех античастиц там были несколько большими.

В обычных условиях протон и антипротон — долгожители, время их жизни фантастически велико — грубо говоря, в миллиард триллионов раз больше возраста Вселенной. Однако в первые доли секунды после образования огненного шара чрезвычайно высокая температура способствовала распадам. Частицы и античастицы тогда быстро распадались и так же быстро восстанавливались обратно. Существовало равновесие. Но по мере снижения температуры процессы восстановления все больше отставали от распадов и число тяжелых частиц уменьшалось, а поскольку античастицы распадались несколько быстрее, вещество Вселенной постепенно становилось все более и более асимметричным — «перекошенным» в сторону частиц.

Наряду с ослаблением восстановительных процессов в охлаждающейся Вселенной уменьшалась и скорость распадов, постепенно приближаясь к ее современному уровню, когда вещество обладает высокой степенью стабильности. Не успевшие распасться античастицы аннигилировали — превратились в нейтрино и электромагнитное излучение. В мире осталась лишь избыточная часть вещества. Из нее-то и образовались все атомные ядра нашей Вселенной.

Если такая картина верна, то антимиров просто нет, они давно сгорели в бурных реакциях распада и аннигиляции, и мы никогда не встретим состоящих из антивещества братьев по разуму.

Правда, предсказанного теорией «великого объединения» распада протона еще не обнаружено, и, в принципе, здесь могут быть неожиданности.

Космический круговорот

На временной оси Вселенной разумная жизнь в окрестностях нашего Солнца занимает крошечный, едва различимый интервал. Наши знания простираются значительно дальше. Мы можем делать достаточно уверенные прогнозы на 1025 — 1030 лет в будущее и заглядывать вплоть до 10-25 секунд от «начала мира» в прошлое. С помощью теории «великого объединения» удается дотянуться до времен порядка 10-40 секунд, с одной стороны, и 10100 лет — с другой. Интервал в полторы сотни порядков, где осуществляется грандиозный космический круговорот материи, где трудно вообразимые просторы соседствуют с исчезающее малым, где элементарные частицы «по совместительству» исполняют роль вселенных, а последние в определенном смысле сами являются микрочастицами.



Правда, на краях интервала надежность наших знаний заметно снижается, здесь допустимо говорить лишь о грубо качественных, ориентировочных оценках. Природа «Биг Бэнга», долговременная судьба Вселенной — это пока интригующие, будоражащие воображение загадки. Можно думать, что многое прояснится, когда будет создана теория, объясняющая величину «мировых постоянных» — скорости света, электрического заряда электрона, его массы и так далее. Сегодня все они берутся из опыта, и мы не знаем, почему они именно таковы, какими мы их видим. В своем подходе к описанию мира современная физика еще во многом следует принципу, который один из писателей-юмористов сформулировал так: жизнь такова, какова она есть, и больше никакова. А почему, собственно, такова? Почему не может быть миров с другим значением скорости света, более тяжелым или, наоборот, более легким электроном, другими свойствами пространства и времени?

Однажды Эйнштейна спросили, как делаются открытия.

«Это когда все знают, что какой-то вещи или явления быть не может, а один не знает, он и делает открытие», — ответил ученый.

Всегда следует помнить, что перед нами безграничная Страна Неизвестного, и любая картина мироздания — лишь приближенный слепок с окружающего мира. Или что-то вроде фотографии, которая раз от разу становится все более четкой, но никогда не передает всех деталей — мир неисчерпаемо многообразен.

Вокруг нас все изменяется, переходит из одной своей формы в другую, а вот элементарные частицы почему-то всегда одни и те же. Вселенная старится, а электрон и другие частицы бессмертны. Расчет показывает, что даже небольшие изменения их свойств привели бы к наблюдаемым геологическим и астрофизическим эффектам — уменьшилось или увеличилось бы количество тепла, получаемого нашей планетой от Солнца (на ней были бы ледники или, напротив, океаны кипятка), изменилась бы скорость распада радиоактивных элементов в земной коре и их концентрация была бы совсем не та, что сегодня, и так далее. Например, если бы заряд электрона изменялся всего на сотую долю процента за миллиард лет, то есть на одну-две десятых процента за все время жизни нашей Вселенной, это было бы уже заметным. В общем, если частицы и старятся, то так незначительно, что Вселенная этого почти не чувствует. Или, может быть, они действительно абсолютно неизменны и никаких других миров просто не существует?

Современная наука на эти вопросы ответить не может. Это следующий, более глубокий уровень физики. Однако ученые уже сегодня пытаются нащупать подходы к нему. В надежде найти более общие и универсальные законы природы проверяются «на прочность» самые глубинные основы наших представлений об окружающем мире, которые многим кажутся твердо и навечно установленными истинами. Говоря словами А. С. Пушкина, «и предрассудки вековые и гроба тайны роковые». О нескольких далеких рейдах в Страну Неизвестного, где фантастика смешивается с реальностью, будет рассказано в следующей главе. Первыми в такие путешествия всегда отправляются теоретики. Они не связаны со сложными, дорогостоящими приборами и с помощью своих формул могут углубляться в области, куда экспериментаторы придут лишь через много лет. Физика наших дней — наука математическая, и часто оказывается так, что в ее уравнениях бывают скрыты неожиданные возможности, приводящие к замечательным предсказаниям и к выдающимся открытиям.

Глава III

Глубокая разведка

Основы нашего понимания мира… В физике это — квантовая механика. Она — следующая ступень за механикой Ньютона. А есть ли еще более глубокий уровень — «заквантовая» теория? И почему квантовая механика такая трудная наука? Даже студентов-физиков в университете знакомят с ней только на третьем курсе, когда они освоят уже массу других предметов. Может, дело в том, что физики просто еще не проникли в суть ее законов? Знаете, как бывает с арифметической задачей: можно провозиться с ней целый вечер, а если ввести x и составить уравнение, решение находится за несколько минут. Может, «заквантовая» теория тоже все упростит?