Страница 8 из 13
Было бы замечательно, если бы математик был способен понимать точку зрения гуманитария, в значительной степени отражённую в языке гуманитария, а гуманитарий – точку зрения математика, в ещё большей степени отражённую в языке математика. И то и другое трудно. Ещё труднее не требовать признания одной из точек зрения единственно правильной. Таким образом, и гуманитариев, и математиков следует призвать сделать шаг навстречу друг другу. И начинать надо с преподавания, руководствуясь следующими словами А. Н. Колмогорова:
…Учитель (для конкретности – преподаватель математики) находится в том же положении, как учёный, приходящий со своей проблематикой в уже существующий вычислительный центр с определённым набором вычислительных машин, запасом заготовленных (с другими целями!) программ, даже со штатом программистов. Задача его состоит в том, чтобы обучить этот сложный механизм выполнить новую работу, используя все свои уже заготовленные заранее механизмы, программы, навыки.
Обсуждая вопрос о преподавании кому-либо чего-либо, полезно иметь представление о целях этого преподавания. Среди таких целей можно выделить две: 1) получение образования; 2) подготовка к профессии.
Следует заметить, что в ряде стран различие названных целей отчётливо отражено в организации образовательных учреждений. Так, в России разделение целей организационно оформлено на уровне среднего образования, во Франции – на уровне высшего. В современной России, как это было ещё в СССР, образование призваны давать средние школы; в СССР к профессии готовили техникумы, каковые в современной России переименованы, кажется, в колледжи (слава богу, что не в академии). Во Франции образование дают университеты, профессии же – так называемые высшие школы (grandes écoles), среди которых наиболее известны Высшая нормальная школа (École normale supérieure) и Политехническая школа (École polytechnique). В университеты берут без экзамена всякого, лишь бы он проживал в данном регионе и имел надлежащую справку о среднем образовании; в высшие школы – суровый конкурс, и в них, по крайней мере в некоторых, платят приличную стипендию.
Разумеется, грань между повышением общеобразовательного уровня и профессиональной подготовкой зачастую стирается. Скажем, знакомство с аксиоматическим методом значимо не только в плане общего образования.
Разъясним прежде всего, как в рамках этого метода трактуется слово «аксиома». В повседневном языке аксиома понимается, скорее всего, как утверждение настолько очевидное, что оно не требует доказательств. Однако авторитетный толковый словарь Ушакова вообще отрицает принадлежность слова «аксиома» повседневному языку, относя один из оттенков его значения к математике, а другой – к языку книжному[14]. Словари же иностранных слов – и словарь Крысина[15], и словарь Захаренко и др.[16] – если и впускают это слово в повседневный язык, то лишь в значении, квалифицируемом как переносное: «Бесспорное, не требующее доказательств положение». Основное же, даваемое первым значение слова «аксиома» эти словари толкуют сходным образом: «Исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений» (словарь Крысина), «Отправное, исходное положение какой-либо теории, лежащее в основе доказательств других положений этой теории, в пределах которой оно принимается без доказательств» (словарь Захаренко и др.). Таким образом, в том своём значении, которое является основным для математиков, аксиомы трактуются не как положительные утверждения, а как формулировки предположений. В современной математике развитие какой-либо аксиоматической теории происходит следующим образом: предположим, что верно то, что записано в аксиомах, тогда окажется верным то-то и то-то.
Сущность аксиоматического метода останется непонятной без предъявления содержательных примеров. Сообщим поэтому, как выглядит фрагмент одной из аксиоматических систем для геометрии. Сперва объявляется, что существуют два типа объектов; объекты первого типа называются точками, объекты второго типа – прямыми. Что это за объекты, как они «выглядят», намеренно не объясняется. Далее декларируется, что существует некоторое отношение, называемое отношением инцидентности, в которое могут вступать между собой отдельно взятая точка и отдельно взятая прямая. Что это за отношение, опять-таки не объясняется, сообщается лишь, что если даны точка и прямая, то они могут быть инцидентны друг другу, а могут быть и не инцидентны. Если точка инцидентна прямой, то говорят, что точка лежит на этой прямой, а прямая проходит через эту точку. Наконец, указываются свойства, соединяющие между собой вводимые сущности: в нашем случае – точки, прямые, отношение инцидентности. Формулировки таких свойств и называются в математике аксиомами, в нашем случае – аксиомами геометрии.
Для примера приведём три из аксиом геометрии. Первая: для любых двух точек существует прямая, проходящая через каждую из этих точек. Вторая: существуют три точки, не лежащие на одной прямой. Третья: для любой прямой и любой не лежащей на ней точки существует не более одной прямой, проходящей через эту точку, но не проходящей ни через одну из точек, лежащих на исходной прямой (эта аксиома называется аксиомой о параллельных). Эти три аксиомы вкупе с другими аксиомами, говорящими о свойствах точек, прямых и отношения инцидентности, а также о свойствах некоторых других объектов и отношений, позволяют развить науку, называемую геометрией. При этом никакими иными сведениями, кроме тех, которые записаны в аксиомах, пользоваться не разрешается.
Предпринимались попытки создать аксиоматику и для некоторых нематематических дисциплин, скажем для фонологии. В качестве исходных понятий брались такие объекты, как звук языка и фонема. В качестве исходных отношений – отношение равносмысленности, в каковом отношении могли находиться две цепочки звуков языка, и отношение принадлежности, в каковом отношении могли находиться звук языка и фонема. Одна из аксиом постулировала, что если при замене в какой-то цепочке звуков языка звука X звуком Y оказалось, что результирующая цепочка не равносмысленна исходной, то звуки X и Y не могут принадлежать одной и той же фонеме. (Эта аксиома называется аксиомой минимальной пары, поскольку пара цепочек, не являющихся равносмысленными и различающихся лишь тем, что в одной и той же позиции в них стоят разные звуки, называется минимальной парой.) Другая аксиома постулировала, что если, напротив, в любой цепочке звуков такая замена приводит к равносмысленной цепочке, то звуки X и Y непременно принадлежат одной и той же фонеме (эта аксиома называется аксиомой свободного варьирования, поскольку про звуки X и Y, во всех случаях допускающие замену одного другим, так что результирующая цепочка оказывается равносмысленной исходной, говорят, что они находятся в отношении свободного варьирования).
И геометрический, и фонологический примеры демонстрируют главное, что характеризует аксиоматический метод. Это главное состоит в следующем. Природа вводимых в рассмотрение предметов и отношений намеренно не разъясняется, они остаются неопределяемыми. Единственное, что про них предполагается известным, – это те связи между ними, которые записаны в аксиомах. Вся дальнейшая информация выводится из аксиом путём логических умозаключений. Таким образом, человек, собирающийся развивать теорию на основе сформулированных аксиом, должен сделать над собой психологическое усилие и забыть всё, чему его учили в школе по геометрии и в вузе по фонологии. Другое дело, что он ни в коем случае не должен забывать этого на стадии составления списка аксиом, коль скоро желает, чтобы эти аксиомы отражали реальность.
14
Положение, принимаемое без доказательств (мат.). || Очевидная истина, утверждение, принимаемое на веру (книжн.) (Толковый словарь русского языка / Под ред. Д. Н. Ушакова. – М., 1935–1940.).
15
Крысин Л. П. Толковый словарь иноязычных слов. – 2-е изд., доп. – М., 2000.
16
Захаренко Е. Н., Комарова Л. Н., Нечаева И. В. Новый словарь иностранных слов. – М., 2003.