Страница 110 из 111
83
Из всех достижений, которые будут обсуждаться далее в этой главе, только вопрос о микроскопическом устройстве чёрной дыры пока не имеет полной ясности. Как упоминалось в главе 4, в 1996 году Эндрю Строминджер и Кумрун Вафа обнаружили, что если постепенно уменьшать (математически) силу гравитации, то чёрные дыры определённого типа превращаются в некоторые наборы струн и бран. Подсчитав возможные конфигурации всех составляющих, Строминджер и Вафа заново вывели, самым явным из когда либо имеющихся способов, знаменитую формулу Хокинга об энтропии чёрной дыры. Но даже при этом они не смогли описать эти составляющие в случае более сильного гравитационного поля, то есть в условиях, когда формируется чёрная дыра. Другие учёные, например Самир Матур и некоторые из его коллег, выдвинули другие идеи, в том числе возможную реализацию чёрных дыр в виде так называемых «пушистых шариков», места скопления вибрирующих струн, разбросанных по всей внутренности чёрной дыры. Пока эти идеи остаются гипотетическими. Далее в этой главе будут обсуждаться результаты (в разделе «Теория струн и голография»), наиболее внятно проясняющие вопрос микроскопического устройства чёрной дыры.
84
Более точно, гравитация может быть выключена в некоторой области пространства, если перейти в состояние свободного падения. Размер этой области зависит от масштабов изменения гравитационного поля. Если гравитационное поле изменяется только на больших расстояниях (то есть если гравитационное поле однородно или почти однородно), свободное падение скомпенсирует гравитацию в большой области пространства. Но если гравитационное поле изменяется на малых расстояниях — например, на расстояниях порядка вашего роста — то гравитацию можно погасить на уровне ног, но при этом чувствовать её на уровне головы. Это будет особенно важно потом, при падении на чёрную дыру, потому что гравитационное поле усиливается по мере приближения к сингулярности чёрной дыры; сила гравитации резко возрастает при уменьшении расстояния до сингулярности. Быстрое изменение означает, что нет никакого способа скомпенсировать эффект наличия сингулярности, что в конце концов растянет ваше тело до точки полного разрыва, потому что гравитационное притяжение на уровне ваших ног будет сильнее (если вы падаете ногами вперёд), чем на уровне головы.
85
Эти рассуждения иллюстрируют открытие, сделанное в 1976 году Вильямом Унру, в котором движение некоторого объекта связывается частицами, встреченными им на пути. Унру обнаружил, что если вы будете двигаться с ускорением сквозь пространство, вы окажетесь в газе частиц, температура которого задаётся вашим движением. Общая теория относительности указывает, что наличие ускорения определяется по сравнению с системой отсчёта, связанной с наблюдателем в состоянии свободного падения (см.: «Ткань космоса», глава 3). Поэтому если удалённый наблюдатель не находится в состоянии свободного падения, он видит излучение, испускаемое чёрной дырой; свободно падающий наблюдатель его не видит.
86
Чёрная дыра образуется, если масса M, заключённая внутри сферы радиуса R, превышает c2R/2G, где c — скорость света и G — постоянная Ньютона.
87
На самом деле, когда материя под давлением своего собственного веса сжимается и образуется чёрная дыра, горизонт событий будет, как правило, находиться внутри границы рассматриваемой области. Иными словами, мы ещё не максимизировали энтропию в данной области. Это легко поправить. Набросайте больше материи внутрь чёрной дыры, что приведёт к расширению горизонта событий до исходной границы области. Поскольку за счёт этого добавочного процесса энтропия снова увеличится, то энтропия материи внутри данной области окажется меньше энтропии чёрной дыры в этом объёме, то есть площади поверхности данной области в планковских единицах.
88
G.’t Hooft, Dimensional Reduction in Quantum Gravity, «Salam Festschrift», eds. A. Ali, J. Ellis & S. Randjbar-Daemi. River Edge, N. J.: World Scientific, 1993, p. 284–296 (QCD161:C512:1993).
89
Большинство самых важных научных открытий выросло из работ и достижений предшественников. Данный результат не является исключением. Помимо т’Хоофта, Сасскинда и Малдасены, среди исследователей, осветивших путь к этому результату и развивших его последствия, были Стивен Габсер, Джо Польчински, Александр Поляков, Ашок Сен, Эндрю Строминджер, Кумрун Вафа, Эдвард Виттен и многие другие.
Для подготовленного читателя приведём более точное описание результата Малдасены. Пусть N — это число три-бран в стопке бран и пусть g — это значение константы связи в теории струн типа IIB. Когда gN мало, много меньше единицы, физика хорошо описывается низкоэнергетическими струнами, движущимися в стопке бран. В свою очередь такие струны хорошо описываются некоторой четырёхмерной суперсимметричной конформно-инвариантной квантовой теорией поля. Но когда gN велико, теория поля попадает в режим сильной связи, что затрудняет её аналитическое рассмотрение. Однако в этом режиме мы можем применить результат Малдасены, который говорит, что можно перейти к описанию струн, движущихся на фоне геометрии, обусловленной близким расположением к горизонту стопки бран, что есть AdS5×S5 (пятимерное пространство анти-де Ситтера на пятимерную сферу). Радиус этого пространства контролируется gN (точнее, радиус пропорционален (gN)1/4), таким образом, при больших gN кривизна пространства AdS5×S5 мала, что гарантирует обозримость вычислений по теории струн (в частности, они хорошо аппроксимируются вычислениями в рамках модели, являющейся модификацией эйнштейновской гравитации). Поэтому при изменении gN от малых значений до больших физическое описание переходит от четырёхмерной суперсимметричной конформно-инвариантной квантовой теории поля к десятимерной теории струн на пространстве AdS5×S5. Это и есть так называемое АдС/КТП соответствие (анти-де Ситтер / конформная теория поля).
90
Хотя полное доказательство гипотезы Малдасены пока неосуществимо, за последние годы связь между описаниями в балке и на границе значительно прояснилась. Например, был выделен класс вычислений, результаты которых справедливы для любых значений константы связи. Поэтому эти результаты можно явно проследить от малых значений константы связи до больших. Таким образом, можно подсмотреть процесс «трансформации», согласно которому описание физики в объёме переходит в граничное описание, и наоборот. Такие вычисления показали, например, как цепочки взаимодействующих частиц в граничной теории могут трансформироваться в струны в объёме — особенно убедительная интерполяция между двумя описаниями.
91
Более точно, это некий изменённый вариант гипотезы Малдасены. Здесь на границе вместо изначальной квантовой теории рассматривается теория, приближённая к квантовой хромодинамике. Это изменение приводит к соответствующим модификациям теории в балке. В частности, следуя работе Виттена, высокая температура в граничной теории переходит в чёрную дыру в теории в балке. В свою очередь словарь по переводу между двумя описаниями показывает, что трудная задача вычисления вязкости кварк-глюонной плазмы переходит в задачу вычисления реакции горизонта чёрной дыры на определённые деформации — что трудоёмко, но вполне выполнимо.
92
Другой подход к задаче полного определения теории струн, возникший из более ранних работ в этой области, называется Матричной теорией (что даёт ещё одно возможное объяснение для значения буквы «M» в M-теории). Этот подход был разработан Томом Бэнксом, Вили Фишлером, Стивом Шенкером и Леонардом Сасскиндом.