Добавить в цитаты Настройки чтения

Страница 8 из 16

К концу XIX века торпеды взяли на вооружение все основные флоты мира. Но военные суда совершенствовались. Возросли их огневая мощь и скорость. Подобраться на расстояние торпедного выстрела стало трудно. Да и в случае попадания суда, разделенные на множество водонепроницаемых отсеков, тонуть не спешили. В 1876 году Уайтхед выпустил улучшенные торпеды с зарядом 36 кг, скоростью 17 узлов на дистанции 800 м. Совершенствовать их далее стало невозможно. Для увеличения скорости в два раза мощность двигателя требовалось увеличить не менее чем в восемь раз! Соответственно возрастал размер и вес баллона со сжатым воздухом. Между тем моряки желали многократного увеличения скорости и дальности.

Казалось, развитие торпеды зашло в тупик, но в 1899 году лейтенант русского флота И.И. Назаров нашел способ многократного увеличения запаса ее энергии за счет сжигания горючего и впрыскивания воды. Объем получавшейся смеси пара и продуктов сгорания в сотни раз превышал объем сжатого воздуха.

Новые торпеды называли парогазовыми (рис. 2).

Рис. 2

Внутри них находилось несколько резервуаров, в которых держали сжатый воздух, примерно 50 л пресной воды и топливо — керосин либо спирт. После выстрела они подавались в подогреватель, смешивались и поступали в цилиндры компактной расширительной машины (рис. 3).

Часто применяли два соосных гребных винта, вращающихся в разные стороны. Это избавляло торпеду от постоянного сноса в сторону. Переделанная таким образом английская торпеда Мк.8 калибром 533 мм и длиной 6,7 м имела скорость 45 узлов и дальность более 4 тыс. м. Советская парогазовая торпеда образца 1941 года развивала скорость 94,5 км/ч и долгое время оставалась самой быстроходной в мире.

Но не только в скорости дело. Парогазовые торпеды оставляли за собой хорошо заметный пенный след. Видя его, атакуемые корабли энергично маневрировали и открывали ураганный огонь, что часто спасало их от гибели.

В 1942 году в СССР появилась «бесследная» электрическая торпеда ЭТ-45, развивавшая скорость 54 км/ч на дальности 4000 м, с зарядом в 400 кг. Любопытная особенность торпеды — биротативный электродвигатель. Его ротор и то. что должно называться статором, вращаются в противоположные стороны и непосредственно приводят в действие гребные винты. Это значительно уменьшало вес двигателя, избавляло от необходимости иметь сложные механические передачи.

Свинцово-кислотную аккумуляторную батарею торпеды удалось значительно облегчить. Поскольку срок жизни торпеды невелик, покрытые активной массой свинцовые пластины сделали предельно тонкими и разделили не пластмассовыми сетками, как обычно, а тончайшим пористым ольховым шпоном.

В 1938 году в нашей стране была испытана торпеда, автоматически наводящаяся на шум корабля. Тогда довести ее до серийного производства не удалось. В 1942 году такие торпеды появились у немцев, и это едва не привело к полной океанской блокаде Англии и США.

Двигатель парогазовой торпеды из-за необходимости выбрасывать продукты сгорания, преодолевая давление воды, глохнет уже на глубине 20–30 м. Электрические торпеды этого недостатка лишены, поэтому в сочетании с системой самонаведения их можно применять и против подводных лодок (рис. 4).

Рис. 4. Современная электроторпеда:

1 — винт; 2 — двигатель; 3 — батарея; 4 — командное устройство; 5 — боевой заряд; 6 — система самонаведения; 7 — акустическая антенна.





В послевоенные годы торпеды принялись оснащать новыми энергетическими установками. Их калибр возрос до 550, а то и до 609 мм, длина до 8 м, масса боевого заряда достигла 560 кг, а в 60-е годы появились и атомные заряды.

Корни многих из этих разработок уходили в 30-е годы, к работам немецкого профессора Г. Вальтера, разработавшего в 1937 году парогазовую турбину, увеличившую подводную скорость субмарин до 25 узлов. В ней перекись водорода высокой концентрации разлагалась катализатором на водяной пар и кислород. Он подавался в камеру сгорания вместе с жидким топливом и пресной водой. Получившаяся раскаленная парогазовая смесь устремлялась под высоким давлением в турбину, а после употребления охлаждалась. Пар превращался в воду и возвращался в камеру сгорания, а углекислота удалялась за борт.

Двигатели Вальтера нашли применение и в торпедах. Например, советская «53–65» при скорости 44 узла преодолевала 22 тыс. м, а при 68-узловой — 12 тыс. м. В современной, 1990 года, английской газотурбинной торпеде «Спиершфиш» используется жидкое топливо, содержащее окислитель. Оно обеспечивает ход в 80 узлов, а продукты сгорания бесследно растворяются в морской воде.

На новые электроторпеды поставили батареи, электролитом которых служит забортная морская вода. Такова советская самонаводящаяся СЭТ-72 калибром 400 мм и длиной 4,5 м, принятая на вооружение в 1972 году. У нее источником тока стала батарея с анодами из магниево-ртутного сплава и катодами из хлористого серебра, а электролит (он же охладитель) — забортная вода. СЭТ-72 развивает 40 узлов, проходит 8 тыс. м и способна поражать подводные лодки на глубинах до 450 м.

В погоне за скоростью конструкторы подводного оружия обратились и к реактивной технике. Они экспериментировали с твердотопливными двигателями, у которых, как у ракет, в хвостовой части находятся шашки из пороха. Но этим сходство ограничивается. В сопло подводной ракеты подается вода. Образующаяся смесь пара и газа вырывается из сопла и движет торпеду. Такие системы просты, надежны, но действуют недолго. В подобных агрегатах могут применяться и вещества, например натрий, бурно реагирующие с морской водой, что позволяет достигать максимально высоких скоростей.

В начале 60-х годов американцы занялись проектированием реактивной твердотопливной торпеды на скорость до 100 узлов. Опыты заняли немало времени, и на них израсходовали внушительные средства, однако об успехах разработчики пока не сообщали.

Тогда же, в 1963 году, подобное оружие начали создавать и в Советском Союзе. Противолодочную ВА-11 «Шквал» длиной 8,2 м и калибром 533 мм оборудовали удачным твердотопливным реактивным двигателем, к тому же после выстрела торпеду окружает газовое облако — своего рода смазка, уменьшающая сопротивление воды. В результате «Шквал» буквально летит под водой со скоростью 194 узла, или 350 км/ч! Поскольку ничего подобного ни у кого не было и нет, в 2000 году американцы, по некоторым данным, попробовали получить информацию о ней методом «плаща и кинжала». Впрочем, удивительно, что они не создали ее раньше всех. Ведь еще в 1921 году живший в Америке крупнейший специалист в области гидродинамики профессор Д.П. Рябушинский поместил в поток воды тело, оснащенное спереди чем-то похожим на свиной пятачок. В воде образовалась длинная сигарообразная кавитационная полость (рис. 5).

Снабженное «пятачком» обтекаемое тело испытывало при образовании полости ничтожно малое сопротивление. Вот только переходу на такой режим движения предшествует период резкого, в сотни раз, роста сопротивления. И хотя опыты Рябушинского были известны всем, за полвека нигде в мире, кроме России, не нашли способа разгона тела до скорости, необходимой для выхода на режим кавитации.

И. БОЕЧИН

Рисунки А. КАТКОВСКОГО и А. ИЛЬИНА

ВЕСТИ С ПЯТИ МАТЕРИКОВ

ОПЕРАЦИЯ ПО ТЕЛЕФОНУ проведена недавно во Франции. Команда хирургов, ее выполнявшая, находилась в США. С помощью Интернета и других коммуникационных линий врачи руководили роботом-манипулятором, который блестяще провел пересадку желчного пузыря пациентке, находившейся на опeрационном столе в Страсбурге.