Добавить в цитаты Настройки чтения

Страница 3 из 16

Ныне, похоже, интерес к технологии каменного литья постепенно возвращается. Во всяком случае, директор Государственного унитарного предприятия ВНИППстромсырье, вице-президент Академии горных наук Ю. Бункин и заведующий отделом облицовочных материалов того же института Ю.Сычев убеждены, что начавшееся XXI столетие все же станет удачным для технологии каменного литья.

И не одни они так полагают. Специалисты подсчитали, что в России доля общих потерь тепла в системах централизованного теплоснабжения по вине прохудившихся труб составляет, по меньшей мере, 20–25 процентов, что в 3–4 раза превышает аналогичный показатель в развитых странах. А долговечность отечественных тепловых сетей в 1,5–2 раза ниже, чем за рубежом, и не превышает в лучшем случае 12–15 лет.

Недавно в Центральном научно-конструкторском бюро (г. Москва) совместно с НПО «Полимерстроймаш» разработана технология, рецептура и конструкция базальтопластиковых труб из сверхтонкого волокна с добавлением специальных полимерных компонентов. Такие трубы диаметром от 50 до 200 мм и длиной до 8,6 м, как показывают испытания, хорошо выдерживают требуемый температурный режим при рабочем давлении до 16 атмосфер и вполне могут заменить стальные.

Камнелитые трубы хорошо выдерживают действие агрессивных грунтов и не требуют специальной электрохимической защиты. Срок их службы — как минимум 50 лет. Кроме того, каменные трубы обладают повышенной пропускной способностью, поскольку гидравлическое сопротивление в них в 1,5 раза ниже, чем в стальных. Весьма важно и то, что базальтопластиковые трубы в 3–4 раза легче металлических, и потому они гораздо удобнее для транспортировки.

Еще один немаловажный фактор — базальтового сырья в нашей стране огромные запасы, и стоит оно весьма недорого.

Отечественную новинку не раз представляли на крупных выставках в России и за рубежом (в частности, в Германии), где она получила высокую оценку специалистов.

Однако если мы не хотим, чтобы нас в очередной раз обставили, следует поторопиться. Так, Украинская академия наук в последние годы активно совершенствует технологии каменного литья и помогает внедрять их в производство. Два крупнейших завода — Криворожский и Донецкий — уже начали производство петрургической продукции — кислотоупорных блоков. А Госплан Украины подсчитал: если все заводы республики перейдут с металлических изделий на камнелитые, то страна сможет экономить каждый год 300 тысяч тонн чугуна, тысячи тонн углеродистых сталей и свинца.

С интересом рассматривают возможности каменного литья специалисты Турции и некоторых других стран, где много строят, но не имеют больших запасов леса и металла.

У нас же, как обычно, от теории до практики — дистанция громадного размера. В Карелии недавно остановился Кондопожский завод, на котором работала плавильная печь по производству камнелитых труб и плит для химических производств. Причина проста — нет денег на развитие производства. По той же причине прекращены научно-исследовательские работы на ОАО «Стекло». И только на Первоуральском заводе бурового оборудования еще остался маленький цех, где выпускают небольшими партиями изделия из каменного литья по мере поступления заказов.

И все-таки лед, похоже, тронулся. Московское правительство, которому приходится ныне менять многие сотни километров подземных коммуникаций столицы, вроде бы заинтересовалось петрургией. Ведь каменные водопроводы и канализация в Древнем Риме служили много веков, и лишь недавно их заменили более современными, но опять-таки каменными — керамическими и бетонными.

Виктор ЧЕТВЕРГОВ

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Стометровый телескоп поможет заглянуть в эпоху… Большого взрыва

Мы еще с привычной гордостью говорим о 5-метровом телескопе Маунт-Вилсоновской обсерватории, построенном в 1949 году, или о 6-метровом телескопе, расположенном близ станицы Зеленчукской (1975 год).





Между тем в планах астрономов Европейской южной обсерватории (ESО) значится создание к 2015 году «Overwhelmingly Large Telescope» (OWL) — нового оптического телескопа, возможности которого превзойдут все ныне существующие рекорды по этой части.

Диаметр зеркала OWL, возвести который задумали в Гархинге, близ Мюнхена, почти в центре Европы, составит 100 м, а вес — 20 000 т.

С помощью подобного прибора высотой 135 м можно будет без труда прочитать надпись на монете, лежащей в 1000 км от него. Говоря иными словами, во Львове грош упадет, в Мюнхене его заметят.

Даже самый крупный на сегодняшний день астрономический прибор — Кеск-телескоп, установленный на Гавайских островах, — по сравнению с проектируемым аппаратом выглядит сущим карликом. В его куполе высотой 31 м хватило места лишь для 10-метрового зеркала. Таким образом, гордость современной науки окажется в 1000 раз слабее будущего гиганта.

Конечно, возвести громадную оптику телескопа ОWL можно, лишь прибегнув к определенным хитростям, ибо отлить цельное зеркало диаметром 100 м невозможно. Его придется составить из 2000 отдельных шестиугольных зеркал. При создании вторичного зеркала диаметром 19 м ученые намерены использовать технологию, чем-то напоминающую, как они шутят, детский конструктор. Зато дополнительные направляющие зеркала диаметром 8,2 и 5,6 м будут отлиты из цельных кусков стекла и очень тщательно отшлифованы.

Упомянем еще одну проблему. Долгое время ученые не знали, как избавиться от такой досадной помехи, как атмосферная рябь. Встроить в телескоп электронные элементы, которые компенсируют искажения, вносимые атмосферой? Это ослабит его прочность. В конце концов, астрономы придумали особую конструкцию. На пути лучей они поставят еще одно, пятое, тончайшее зеркало диаметром всего 65 см — чудо современной техники. На его обратной стороне расположатся полмиллиона крохотных моторчиков, которые, сто раз в секунду меняя форму зеркала, сгладят искажения. Ну а чтобы этот громадный телескоп не обрушился, его поместят в огромную ванну, наполненную маслом.

С появлением нового телескопа сбудется давняя мечта астрономов: наконец-то они сумеют заглянуть на окраину Вселенной (напомним, наше мироздание простерлось на 30 млрд. световых лет). Возможно, тогда ученые сумеют разгадать тайну возникновения Вселенной и объяснят, каким образом 13–15 млрд. лет назад сформировались первые галактики и как черные дыры влияют на звездные системы.

Публикацию по иностранным источникам подготовил А.ВОЛКОВ

Художник Ю.САРАФАНОВ

ИНФОРМАЦИЯ

ЗРИМЫЙ ЗВУК. Уникальные возможности нового ультразвукового микроскопа продемонстрировали на 1-м Международном салоне инноваций и инвестиций специалисты Института биохимической физики РАН. Вот что об этом рассказал заведующий лабораторией акустической микроскопии Вадим Левин:

— Акустический микроскоп работает на частоте до 200 МГц. Это позволяет с его помощью видеть то, что невозможно узреть иными методами. Дело в том, что ультразвук хорошо проникает в объемы различных непрозрачных сред — композитов, полимеров, металлов. В связи с этим широки и горизонты применения новой техники — от биологии до нанотехнологии. В отличие от обычного УЗИ, здесь частота сканирования увеличена в 10–50 раз, поскольку соответственно уменьшена длина сканирующей волны. Таким образом появляется возможность получить и более четкое изображение с выделением мельчайших деталей. Видны даже отдельные клетки, стала хорошо различима структура тканей, те механизмы, с помощью которых клетка движется и сохраняет свою форму.

Этот же прибор используется для изучения структуры композитов на основе углерода, которые ныне становятся основными материалами авиационной и космической техники. С его помощью также проводятся исследования фуллеренов и фуллеритов — шарообразных структур, представляющих собой новое, четвертое, состояние углерода. Среди них оказались материалы даже тверже алмаза, который до недавнего времени считался самым твердым веществом на планете.