Страница 4 из 16
Блок градиентных стержней используется и в лазерном принтере. Он обеспечивает фокусировку излучения линейки миниатюрных полупроводниковых лазеров (рис. 5) на поверхность светочувствительного барабана.
Рис. 5
Важно отметить, что если бы здесь передача излучения производилась при помощи обычной оптики, то потери были бы крайне велики, и лазерный принтер в современной его форме оказался бы невозможен.
Напомним, что градиентный стержень не обязательно должен быть коротким. Есть градиентные стержни длиною в сотни и тысячи метров, только они называются оптическими волокнами. В них распределение показателя преломления происходит так, что траектория луча проходит относительно далеко от поверхности волокна. Благодаря этому он и не уходит вовне через всегда существующие на поверхности волокна шероховатости. (Оптические волокна первых поколений были основаны на полном внутреннем отражении луча от поверхности. Поэтому получались огромные потери света через поверхностные дефекты и дальность передачи сигнала по таким волокнам не превышала нескольких метров.)
Сегодня по градиентным оптическим волокнам сигналы передаются на десятки тысяч километров. Такие линии связи надежно защищены от помех и подслушивания и, как полагают специалисты, способны значительно потеснить спутниковую связь. Однако при создании волоконно-оптических систем связи возникают специфические проблемы соединения линий между собой. Вот одна из них, казалось бы, очень простая — передать сигнал из одного волокна в другое. Для обычной электрической линии дело решается при помощи паяльника.
Здесь такое невозможно. Свет из оптического волокна, обычно имеющего диметр 0,02 — 0,05 мм, выходит расходящимся пучком с углом 10–20 градусов. Поэтому при передаче его непосредственно в другое волокно потери энергии будут огромны. На помощь приходят те же градиентные стержни.
На рисунке 6 изображена схема разъемного соединителя оптических волокон.
Волокна приклеиваются к торцам двух одинаковых градиентных стержней. Пучок света, пройдя через первый стержень, становится параллельным. Войдя в торец второго, он на противоположном его конце соберется в точку и почти без потерь попадет в следующую оптическую линию. Между торцами стержней можно иметь большой воздушный промежуток. А при необходимости ослабить сигнал можно установить светофильтр. Такое устройство называется аттенюатором.
Иногда по нескольким оптическим линиям передают сигналы с разной длиной волны. Настроиться и поймать нужную волну, как это делает радиоприемник, в оптическом диапазоне не просто. Когда-то для этого пытались делать приемники, содержавшие гетеродины, фильтры, смесители и прочие элементы, аналогичные тем, что применяются в радиодиапазоне.
Получалось громоздко и сложно. А вот как изящно и просто эта задача решается градиентной оптикой. На рисунке 7 — схема демультиплексора, предназначенного для разделения единого потока излучения с разными длинами волн на два отдельных потока.
Рис. 7
Волокно со смешанным потоком и приемные волокна приклеены к градиентной стержневой линзе. Смешанный поток проходит через линзу, лучи становятся почти параллельными и попадают на отражательную дифракционную решетку (зеркало, покрытое множеством штрихов — до нескольких тысяч на 1 мм). От нее лучи разных длин волн отражаются под разными углами. Пройдя через стержневую линзу, каждый из них сходится в свою точку и попадает в соответствующий оптический канал. Просто, не правда ли?
О градиентной оптике можно еще говорить много. Но в заключение сравните, как выглядит объектив для видеокамеры на обычных (рис. 8) и градиентных элементах (рис. 9).
Рис. 8
Рис. 9
Тем, кто хочет стать специалистом в этой области, сообщаем, что курсы по градиентной оптике читаются в С.-Петербургском государственном техническом университете студентам кафедры «Прикладная физика и оптика твердого тела» (радиофизический факультет).
Автор благодарит С.Ю. Дьякову (ТОО «ВНИИМП-ОПТИМЕД»), В.Г. Ильина, Н.В. Ремизова («Гринекст»), Т.С. Ровенскую (МГТУ им. Н.Э. Баумана), И.А. Аброяна (СПбГТУ) и европейское представительство NIPPON SHEET COMPANY, оказавших большую помощь при подготовке данной статьи.
Р. ИЛЬИНСКИЙ, кандидат технических наук
КОЛЛЕКЦИЯ ЭРУДИТА
ПОДЕЛИСЬ ДОБЫЧЕЮ СВОЕЙ…
Человек издревле полагал, что столь благородные качества, как стремление помочь ближнему или поделиться с ним куском хлеба, присущи только его натуре. Однако ученые установили, что и обезьяньему племени не чуждо благородство.
Исследователям удалось выяснить, что не только такие «интеллектуалы», как, например, шимпанзе, но и куда менее одаренные представители семейства цепкохвостых — капуцины — в сложных ситуациях демонстрируют взаимовыручку и готовность поделиться с собратом последним бананом.
В ходе экспериментов, проведенных в США, перед двумя капуцинами, разделенными сеткой, позволяющей им видеть друг друга, ставили поднос с двумя чашками. В одной из них лежали кусочки яблока, а вторая была пустой. Ни одна из обезьянок самостоятельно подтащить к себе поднос не могла, но если они брались за дело сообща, то желанная чашка с яблоками оказывалась через некоторое время перед одной из обезьян. И далее начиналось самое важное и удивительное: в большинстве случаев та обезьяна, которой доставалась призовая чашка, делилась кусочками яблока с помогавшей ей напарницей.
Экспериментаторы были поражены не только той скоростью, с которой обезьянки учатся работать сообща, но и главным образом тем, что они делятся пищей и ради ее получения способны на взаимовыручку.
Естественно, у ученых возник вопрос: что же заставляет капуцинов поступать столь по-человечески? Как сочли ученые, желание поделиться вкусным куском, возможно, является отражением столь сложных психологических процессов, как стремление продемонстрировать свою благодарность. Получается, человеческая мораль не является каким-то уникальным или взявшимся ниоткуда феноменом.
На следующем этапе экспериментов ученые собираются расширить круг участников и выяснить, каким образом капуцины будут выбирать из группы собратьев именно того, кто сможет помочь в работе и на чье плечо можно опереться в трудную минуту.
В ПОЛЕТ, МАХОЛЕТ?!
Первый в мире пилотируемый полет на «орнитоптере» — самолете, который держится в воздухе за счет взмахов крыльев, — планирует осуществить этим летом группа канадских авиаконструкторов под руководством профессора Джеймса де Лорье.
Для Джеймса де Лорье, профессора торонтского Института аэрокосмических исследований, создание «летательного аппарата тяжелее воздуха, который будет летать за счет взмахов крыльев», поначалу было простым увлечением, но затем стало целью всей жизни.
Решению этой проблемы он посвятил более 20 лет. «Еще в конце XIX века, — говорит он, — было множество разработок в этом направлении, но в воздух смогли подняться только аппараты с жестко закрепленными несущими поверхностями». Возможность всерьез заниматься разработками конструкций «орнитоптеров», по его словам, появилась в конце XX столетия, когда были разработаны легкие, но высокопрочные и пластичные материалы.