Добавить в цитаты Настройки чтения

Страница 18 из 20



Рис. 5

Облучая им модель собирающей линзы, при стробоскопическом замедлении картины можно заметить, как скорость волн над линзой уменьшается и как это замедление приводит к наибольшему отставанию в центре линзы. Фронт волны изгибается, и получается сходящийся пучок волн. На псевдоцветной проекции можно хорошо разглядеть увеличение высоты волн в фокусе.

А теперь попробуйте поставить, казалось бы, абсурдный опыт. Поставьте модель плоско-выпуклой линзы на попа и облучите ее плоской, по возможности короткой волной. Вы вновь получите пучок сходящихся волн (рис. 6).

Объяснить его физический смысл нетрудно, зная о зависимости скорости волн от глубины. Опыт иллюстрирует принципы так называемой градиентной оптики.

Речь идет о новых типах линз, представляющих собою плоскую пластину, в которой коэффициент преломления стекла симметрично меняется (имеет градиент) относительно центра. Пока линзы, основанные на этом принципе, можно увидеть лишь в лабораториях. Однако метод градиента преломления широко применяется в некоторых изделиях декоративного искусства.

Вы наверняка встречали дверные и оконные стекла, через которые прекрасно проходит свет, но все искажается так, что ничего не разглядишь. Издали они похожи на грубо отесанный кусок льда. Но подойдите и пощупайте — перед вами плоские пластины…

Волновая ванна позволяет наглядно и в динамике показать удивительно много физических процессов, лежащих в основе важнейших устройств современной техники. Не исключено, что работа с ней может привести к большим и малым открытиям и изобретениям. Поэтому такой прибор особенно ценен для физического кружка в современной не слишком богатой приборами школе.

Тому, кто захочет серьезно заняться этим делом, советуем прочесть интересную книгу.

Роберт Вихард Голь. Механика, акустика и учение о теплоте. Учебник издавался у нас с 1953-го и, по крайней мере, до 1971 года. На случай, если будет возможность выбора, учтите: в ранних изданиях есть много очень интересных, выпущенных позже мест…

А. ВАРГИН

Рисунки автора

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Не все комар, что пищит

Летом иногда даже в средней полосе нет спасенья от комаров, что же говорить о Сибири и Заполярье, где даже у привычных к ним местных жителей трудоспособность снижается более чем вдвое, резко уменьшаются привес и надои скота. Можно было бы комара вовсе уничтожить, но он нужен живой природе. Известны случаи, когда после уничтожения комаров исчезали птицы и звери, а леса гибли от гусениц.

Поэтому приходится лишь отгонять комаров от людей и домашних животных. И здесь помогает радиоэлектроника.



Генератором электрических колебаний ультразвукового диапазона (рис. 1) служит мультивибратор, построенный на логических ячейках микросхемы DD2, нагруженной пьезоэлектрическим звукоизлучателем BQ1.

Рис. 1

Характер излучения задается генератором инфранизких колебаний, в котором работает микросхема DD1 совместно с времязадающей цепочкой R1, R2, С1. Связь между обоими генераторами выполнена с определенной «изюминкой»: узел DD1 осуществляет периодическое питание ультразвукового генератора через диод VD1 и конденсатор С2. Когда на выходе 3 микросхемы DD1 возникает прямоугольный импульс напряжения, происходит быстрый заряд конденсатора С2; одновременно начинает действовать высокочастотный генератор. По окончании импульса конденсатор С2 оказывается разобщенным с выходом DD1 благодаря диоду VD1. Питание «комариного» генератора продолжается еще некоторое время падающим напряжением разряда конденсатора, отчего частота импульсов генератора может плавно изменяться. Весьма вероятно, что в этом диапазоне излучений находятся сигналы тревоги, способные отпугивать комаров или еще кого-нибудь из кусачего сообщества. Эффективность действия устройства следует проверять, направляя его излучение на густо роящихся насекомых.

Для сборки конструкции можно использовать постоянные резисторы МЛТ-0,125 или более мощные, переменный — СП-0,4; конденсаторы типа КЛС или МБМ (СЗ) и оксидные К50-6 остальные. «Цоколевка» примененных микросхем приведена на рисунке 2.

В роли ультразвукового излучателя взят пьезоэлектрический микрофон типа УМ-1.

Времязадающая цепочка генератора на DD2 имеет переменный резистор R7, позволяющий регулировать частоту в пределах 10…50 кГц. Примененный для воспроизведения излучатель имеет собственную резонансную частоту, на которой интенсивность излучения максимальна. Наряду с основной бывают побочные резонансные частоты. Настройку генератора в резонанс с излучателем можно проводить, присоединив к резистору R8 вход осциллографа: в момент резонанса амплитуда колебаний напряжения на экране значительно возрастает. Тем не менее, наряду с резонансными частотами в процессе экспериментов следует проверить влияние на жалящую «биомассу» ряда промежуточных частот во всем рабочем диапазоне. Во время экспериментов желательно вести записи с характеристикой этих условий — места, наличия освещения, температурной обстановки, условных делений на шкале при регуляторе R7. Ну, конечно, и расстояний, на которых, возможно, будет заметно проявляться влияние излучения.

Кстати, на шкале следует отметить и обнаруженные резонансные частоты излучателя. Фиксация данных экспериментов позволит избежать ненужных «повторений пройденного», а также четко выделить зону продолжительных результатов. К таковым можно было бы отнести не только факты отпугивания насекомых, но и обратного действия — приманивания к излучателю.

Ведь неплохо, если комары и их собратья потеряют интерес к вашему лицу, рукам и набросятся на микрофон-излучатель, где их будут ждать, например, липкие ленты или пылесос.

Ю.ПРОКОПЦЕВ

Зачем нужны радиолампы?

Появившиеся лет сорок назад транзисторы так и не смогли полностью вытеснить радиолампы. Кинескоп телевизора — электровакуумный прибор, в сущности — радиолампа.

СВЧ-генераторы кухонных электроплит и мощные выходные каскады радиолокационных станций выполняются на радиолампах. Многие специалисты утверждают, что по-настоящему качественно способны усиливать звук только ламповые усилители. Поэтому стоит еще раз посмотреть повнимательнее, на что же способна радиолампа. К примеру, добавив к лампе всего три детали, используя некоторые малоизвестные схемные решения, можно создать вольтметр с огромным входным сопротивлением. Но прежде напомним о том, как работает лампа.

В вакуумированном баллоне лампы находятся электроды — катод (к), анод (а) и сетки (с); простейшая лампа — триод — располагает одной сеткой (рис. 1).

Поскольку назначение катода — испускать свободные электроны под воздействием высокой температуры нити накала (н), катод покрывают такими материалами, как барий, торий, которые при сравнительно слабом нагреве «отпускают» электроны. Те образуют вокруг катода «электронное облако», поэтому он приобретает относительно «облака» положительный заряд, удерживающий «облако» от рассеивания.