Добавить в цитаты Настройки чтения

Страница 5 из 17



«Мы придумали новый тип компьютера, который не требует наличия специального центрального процессора. Вместо этого он работает с сетью небольших клеток, выполняющих роль этого самого процессора. Эти клетки получают сигналы от электронной ДНК на определенной частоте и исполняют полученные инструкции.

Если одна из биологических клеток погибает, другие могут занять ее место», — сказал один из разработчиков, Д. Мэдсен. Таким образом, компьютер способен «самовосстанавливаться» и обеспечивать практически бесперебойную работу», — добавил он.

Исследователь полагает, что такой подход позволит резко повысить безотказность вычислительных систем. Использовать же эту разработку имеет смысл там, где особенно важна способность бесперебойной работы компьютеров, к примеру, во время долгих космических полетов.

И.ЗВЕРЕВ

ПАМЯТЬ ПАЛОЧКИ

Всего лишь 1 грамм бактерий кишечной палочки (E.coli) способен заменить 450 жестких дисков с объемом памяти 2 Тб каждый. К такому выводу пришли исследователи из Китайского университета Гонконга. Во всяком случае, ныне они работают над созданием биологической компьютерной памяти. Не исключено, что когда-нибудь домашние компьютеры будут снабжены контейнерами с кишечными палочками, что позволит им по количеству хранимой информации не уступать современным специализированным центрам», — говорят ученые.

Исследователи выяснили, что ДНК этих бактерий прекрасно подойдут в качестве долговременных хранилищ данных. Дело в том, что в геноме кишечной палочки используется лишь часть информации. Именно на неиспользуемые участки и будут записывать информацию для дальнейшего хранения.

Исследователи уже пробовали кодировать на этих участках свои имена, адреса электронной почты и т. д.

ДНК бактерий E.coli можно будет использовать в качестве долговременной памяти.

При этом выяснилось, что бактерии в процессе деления передают информацию своим потомкам, обеспечивая таким образом хранение данных в течение долгого срока.

Впрочем, биосистему придется еще серьезно совершенствовать, поскольку считывать сохраненные данные пока очень хлопотно и происходит это слишком медленно по сравнению с современными технологиями хранения данных. Да и запись сведений на ДНК не происходит в том виде, как это представляется обычным пользователям современных компьютеров, — создал файл, сохранил.

Тут процесс сложный, длительный, осуществимый только в условиях лаборатории. Ведь происходит не запись как таковая, а синтез последовательности нуклеотидов, которые подсаживаются в геном бактерии. Но это, как уже говорилось, имеет и свои преимущества. Информация затем может храниться тысячелетиями — до тех пор, пока будет существовать популяция бактерий.

ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

Из-под воды да в небо

История эта давняя. Еще Жюль Верн в романе «Робур-завоеватель» описал транспортное средство, которое могло передвигаться по суше, воздуху, воде и под водой. С той поры прошло немало времени, но мечта эта так и не осуществлена. Это не значит, что таких попыток вовсе не предпринималось. Кое-чего инженерам добиться все же удалось.



Еще в 1916 году известный немецкий авиаконструктор Э. Хейнкель спроектировал и построил маленький биплан W-200, который можно было быстро разобрать и укрыть на борту подводной лодки.

Это, конечно, была еще далеко не та машина, о которой мечтали морские и воздушные асы. Скорость самолета составляла всего лишь 120 км/ч, радиус полета — не более 40 км. Кроме того, вскоре Германии, потерпевшей поражение в Первой мировой войне, было запрещено иметь совершенную военную технику.

И тогда на сцену выступили американцы. Они заказали немецкому конструктору Хейнкелю, оставшемуся не у дел, два компактных самолета V-1, которые также можно было бы хранить внутри подлодки. Интерес к подобным машинам стали проявлять также в Англии, Италии, Франции, Японии… Весть об этих работах дошла и до Советского Союза.

В начале 30-х годов известный конструктор «летающих лодок» И. Четвериков предложил свой вариант самолета для подводных лодок. Конструкция понравилась морякам, и в 1933 году они приступили к постройке сразу двух машин нового типа. Год спустя одна из них была отправлена в Севастополь для испытаний. Летчик А. Кржижевский совершил несколько полетов, показавших, что машина хорошо держится в воздухе. Пилот даже установил в 1937 году на этой машине мировой рекорд, развив на дистанции 100 км скорость 170,2 км/ч.

Однако специалисты все-таки посчитали машину непригодной для использования в военно-морских силах СССР. Возможно, потому, что в обстановке строжайшей секретности в стране велись работы по созданию «летающей подлодки».

Дело в том, что в 1934 году курсант Высшего морского инженерного училища им. Дзержинского Б. Ушаков представил схематический проект такого аппарата в качестве курсовой работы. Идея показалась интересной, и в июле 1936 года проект был рекомендован для дальнейшего совершенствования.

Вот как воентехник 1-го ранга Б.Ушаков представлял себе действия летающей подлодки. Обнаружив в полете корабль противника и определив его курс, она скрытно садилась на воду за горизонтом и уходила в глубину. При появлении корабля на расчетной дистанции производился торпедный залп. Если же противник менял курс, «ныряющий самолет» всплывал, вновь отыскивал цель в полете и снова нырял. Для большей эффективности боевой работы предполагалось использовать звено из 3 подобных машин, чтобы можно было обложить противника, до минимума снижая возможность его маневра.

Работы над проектом продолжались до начала 1938 года, после чего он был сдан в секретный архив. Громоздкость конструкции, малая скорость под водой (всего 3 узла), сложная и длительная процедура погружения — все это делало проект малореальным.

Впрочем, идея не была забыта окончательно. Уже после Второй мировой войны, в середине 60-х годов, американский инженер-электрик Дональд Рэйд обнародовал свой проект, над которым он трудился 20 лет.

Вначале изобретатель построил опытный образец «Коммандер» — 7-метровый аппарат с дельтовидным крылом. В воздух машину поднимал двигатель внутреннего сгорания мощностью 65 л. с., под водой — электродвигатель мощностью 736 Вт. Пилот-аквалангист сидел в открытой кабине. «Коммандер» развивал в воздухе скорость 100 км/ч, а на глубине — 4 узла.

Получив необходимый опыт, Рэйд затем соорудил более совершенный реактивный аппарат «Аэрошип». Выпустив лыжи-поплавки, двухместная машина садилась на воду. С пульта управления пилот закрывал воздухозаборники и выхлопное отверстие турбореактивного двигателя задвижками; при этом открывались водозаборники и выхлопное сопло водомета. Включался насос, заполняющий балластные цистерны, и «Аэрошип» погружался. Оставалось убрать поплавки, запустить электромотор, поднять перископ — и самолет превращался в подлодку. Чтобы всплыть и взлететь, все операции повторялись в обратном порядке.

В августе 1968 года на глазах у тысяч посетителей Нью-Йоркской промышленной выставки «Аэрошип» спикировал, нырнул в воду, немного поманеврировал на глубине, а потом с ревом взмыл в небо.

Однако даже столь впечатляющая демонстрация не произвела особого впечатления на экспертов. Они указали, что дальность полета машины всего 300 км, скорости под водой и в воздухе тоже невелики — 8 узлов и 230 км/ч соответственно.