Добавить в цитаты Настройки чтения

Страница 4 из 16



Не все, впрочем, так просто. В названии машины не случайно стоит вопросительный знак. Дизайнер понимает: чтобы в полной мере реализовать его выдумку, придется перестроить платформы на станциях, расширить турникеты, снабдить вагоны широкими сдвижными дверьми, организовать в них места для машин таким образом, чтобы любая могла выехать на любой станции. Либо повесить на вагоны таблички: этот от Москвы до Питера, а тот до Бологого…

Чтобы занять водителя, ставшего пассажиром, во время путешествия по железной дороге, каждый UC? оборудован широкополосным доступом в Интернет — работайте или развлекайтесь на здоровье.

Зарядить литиево-ионные батареи UC? на предстоящий пробег в 50 км можно за 20 минут с помощью 3-фазной сети. А при подключении к обычной домашней розетке на это потребуется около двух часов. Скоростные качества мобиля вполне пригодны для езды по городу: машина разгоняется до 50 км/ч за 4,1 с, а при желании на ней можно выжать и все 120 км/ч.

Пока разработаны две основные версии UC? — обычная Ultimate Commuter и специальная одноместная Unlimited Commuter, предназначенная для развозчиков пиццы, почтальонов и курьеров.

СОЗДАНО В РОССИИ

И назвали чудо поливизор

Изобретатели давно мечтают создать телевизор, который бы давал объемное изображение без помощи стереоочков. А идея, между тем, буквально носилась в воздухе…

Во всяком случае, в интерпретации воронежских инженеров-изобретателей Михаила Ильина и Константина Поликарпова это «чудо» выглядит так. Включают установку, напоминающую большой чемодан, и над ней возникают изображения различных объектов. Видеоролик демонстрирует автомобили, воздушный шар, велосипед, гитару, плывущих рыбок, распускающиеся цветы…

Все они возникают как бы прямо в воздухе, пустом пространстве. Но, приглядевшись, замечаешь, что над установкой заметен легкий, почти невидимый туман, в котором возникает изображение. Этот туман и служит экраном, на котором поливизор — так воронежцы назвали свое изобретение — демонстрирует 3D-изображение.

Вообще-то, подобные системы существуют (см. «Подробности для любознательных»). Проекционные системы для показа плоского, а также объемного голографического изображения уже не раз демонстрировали советские, американские и английские специалисты.

Однако те установки использовали в качестве экрана дым или пылевое облако. Инженеры К. Поликарпов и М. Ильин создают туман из очень мелких капель воды. Он вырабатывается внутри «чемодана» с помощью ультразвука из дистиллированной воды и поднимается на высоту 3 метра. Запаса в 20 литров хватает почти на сутки демонстрации.

Наши специалисты не скрывают, что шли по стопам зарубежных коллег. По словам К. Поликарпова, их разработка как раз и началась три с лишним года назад с того, что в Интернете они увидели американский видеоролик. Но свое «ноу-хау» американцы держат в секрете. Так что нашим инженерам пришлось до всего доходить своим умом. Два года ушло на эксперименты, которые они делали на свои собственные деньги — финансировать их разработку не взялся никто: ни государство, ни частные инвесторы.

Установка воронежских специалистов.

Тем не менее, в отечественной конструкции есть несколько технических решений, имеющих преимущества перед зарубежными. Например, у поливизора своя оригинальная схема подачи тумана, поэтому «водяной» экран стабильнее, изображение более четкое. Кроме того, по словам разработчиков, отечественное устройство намного дешевле иностранных аналогов. Там применяли даже космические технологии, а наши умельцы собрали поливизор из подручных материалов.

Использовать поливизор предполагается прежде всего на выставках, в музеях и театрах, на показах мод… Со временем, наверное, глядишь, дело дойдет и до домашнего применения.



В. ЧЕРНОВ

ТРЕХМЕРНЫЕ ИЗОБРАЖЕНИЯ

Попытки создания объемных изображений начались в середине прошлого века с демонстрации стереоскопических изображений. Зрителям выдавали специальные очки, а на экран демонстрировали с помощью пары проекторов сразу два изображения — одно для левого глаза, другое, чуть отличавшееся ракурсом съемки, — для правого. Каждый глаз, благодаря очкам, видел свое изображение. В итоге мозг зрителя формировал стереоскопическое изображение.

Далее, в 70-х годах профессор В.Г. Комар из Научно-исследовательского кинофотоинститута создал одну из первых в мире голографических установок для демонстрации движущихся объемных изображений. Однако она не получила широкого распространения, поскольку одновременно видеть такое кино могли не более четырех человек — слишком узок был угол зрения.

В наши дни исследователи из университета города Санта-Барбара (США) разработали новый вариант создания трехмерных изображений, не требующих использования стереоскопических очков. Трехмерные образы как бы висят в воздухе, их можно обойти и осмотреть с разных сторон, даже пройти сквозь них.

Так выглядит изображение, создаваемое как бы «в воздухе» исследователями из Санта-Барбары.

Ученые использовали технологию FogScreens, с помощью которой на тонком слое капель жидкости создаются двухмерные изображения. Далее, с помощью двух устройств FogScreens и проектора, который управляет движением двухмерных изображений, можно создать два плоских изображения. Затем они трансформируются в трехмерное. Его-то и видит пользователь без всяких приспособлений.

Исследователи назвали свое устройство «бесплотным дисплеем» (Immaterial Display). Он может найти множество применений — в музеях и телемедицине, различных игровых и обучающих системах, электронных книгах с трехмерными иллюстрациями.

Еще одна разработка такого рода принадлежит сотрудникам японского национального института ИКТ. Технология цветной электронной голографии, созданная ими, позволяет продуцировать 3D-изображения движущихся объектов в условиях обычного освещения без использования лазерного луча.

Схема установки сотрудников японского института ИКТ.

Голограмма создается на основе интегральной фотографии, для чего объекты снимают при обычном освещении видеокамерой с объективом, имитирующим устройство фасеточного глаза насекомых, состоящего из множества микролинз. Такой же объектив используется и для демонстрации 3D-изображений.

Чтобы создать цветную голограмму обычным методом, необходимо осветить объект отдельно красным, зеленым и синим лазерными лучами, причем это нужно делать в темном помещении. Поэтому таким способом невозможно получить голографическое изображение движущихся объектов.

Новая технология позволяет снимать объект на видео при обычном освещении. Затем с помощью высокоскоростной обработки данных на компьютере из отснятого видео формируется голографическое изображение. Голограмма демонстрируется на трех LCD-панелях в красном, голубом и зеленом цветах. Затем голографические изображения одного и того же объекта проецируются лазерными лучами и синтезируются в трехмерное изображение, которое может быть показано в режиме реального времени.

Правда, пока размер воспроизводимого образа — всего 1 см, так как голография имеет маленький угол 3D-oбoзрения — не более 2 градусов. Но в ближайшие годы японцы намерены увеличить трехмерное изображение в несколько раз.