Страница 47 из 52
А обработка почвы? Может быть, попробовать применить реактивный роторный плуг? Мотыги на вращающемся валу поочередно врезаются в землю и помогают своей реакцией перемещаться трактору. Некоторые специалисты утверждают, что усилия при пахоте можно уменьшить с помощью самозатачивающихся лемехов.
Другие предлагают надевать на лемеха пластмассовые сменные накладки, уменьшающие трение. В конце концов можно сконструировать трактор на воздушной подушке.
А может быть, вообще не надо вспахивать? Пусть будет ноль-обработка! Только сеять и убирать, не трогая корнеобитаемый слой.
Разными путями движется конструкторская мысль.
Один из перспективных путей - шире сделать захват машин. За считанные проезды проводится культивация или сев. При широкозахватной технологии необходимо создать комбайны, способные за один проход выполнить ряд операций. Одна машина заменяет несколько идущих вслед друг за другом. Это улучшает положение, но не намного - ведь утяжеляется трактор, происходит дополнительное уплотнение почвы.
Проблема остается открытой, решенной частично.
Идет поиск новых будущих технологий.
Еще в 1931 году московский инженер Правоторов предложил новую оригинальную технологию обработки почвы, которая сейчас привлекает все большее внимание специалистов. Представим, по обе стороны большой и длинной "грядки" проложены дорожки или рельсы.
По ним движется П-образный мостовой кран, с которого и осуществляется обработка почвы, уход за растениями.
Механизмы приводятся в действие с помощью электроэнергии. Тем самым можно высвободить десятки миллионов тонн жидкого топлива.
На одном кубанском экспериментальном сельскохозяйственном поле применили подобный мост. Урожай увеличился в полтора раза, а при искусственном поливе - втрое. Но у метода Правоторова есть существенные недостатки - большая металлоемкость, привязка к колее.
Как и во многих других областях производства, вряд ли найдется одно-единственное решение, удовлетворяющее всем требованиям растениеводства. Затраты энергии на пахоту и времени на обработку почвы и полив составляют более половины всех затрат. Поэтому закономерен интерес к ноль-обработке почвы - только сеять и убирать. Неплох и промежуточный метод - безотвальная пахота.
При безотвальной пахоте (это не ноль, а минимальная обработка, когда плугом только подрезается слой земли) затраты энергии в полтора-два раза меньше, чем при обычной традиционной пахоте. Безотвальная вспашка экономит много жидкого топлива. Конечно, применять ее нужно с оглядкой, с учетом местных условий.
Например, в районах с влажным климатом все же предпочтительнее полная пахота с оборотом пласта. А в засушливом климате минимальная обработка почвы дает прибавку урожая до 20 процентов. Почему это так?
Часть энергии, взятой растениями у солнца, уходит на прокачку воды и работу корневой системы. Минимальная обработка по-разному влияет на содержание влаги и структуру почвы. В некоторых условиях влага - это главное, и потому безотвальная система дает заметную прибавку.
Следует также учитывать, что если не перепахивать землю, то для уничтожения сорняков нужно резко увеличить дозу гербицидов. Но на производство гербицидов тоже требуется энергия, и выигрыш вроде бы уменьшается. И все же общий расход энергии сократится на 20 процентов. Игра стоит свеч. Во-первых, 20 процентов - это огромная экономия. А во-вторых, при производстве гербицидов мы не должны расходовать дефицитное жидкое топливо: можно обойтись газом, электроэнергией АЭС и другими источниками.
Если говорить не только о сиюминутной выгоде, а и о дальней перспективе, то безотвальная вспашка пока чуть ли не единственный способ предотвратить эрозию почвы. Надо уже сейчас думать о сохранении среды, дающей жизнь растениям, иначе в сельском хозяйстве может сложиться тяжелая ситуация.
Нежелательно было бы вскоре столкнуться с проблемой создания искусственной почвы. Между тем опасность истощения земли, резкого падения ее плодородия вполне реальна.
В среднем за 10 лет на каждый гектар пашни вносится около 4 тонн органического вещества (в том числе и за счет естественных процессов), а теряется за счет эрозии почти в десять раз больше - 30 тонн. С 1920 года потери гумуса (органического вещества почвы) в южных черноземных районах составили 24 процента. Подобные опасные явления происходят во всем мире. Земледелие продолжает1 жить взаймы у природы за счет усиленного расхода энергии солнца, накопленной в пахотном слое.
При использовании минимальной обработки почвы удается не только снизить затраты энергии, а и существенно замедлить эрозию почвы, и в этом ее большой смысл.
Обработка почвы - вещь очень деликатная, и небольшое технологическое усовершенствование иногда способно дать значительный энергетический выигрыш.
Приведем один поучительный пример.
Гектар влаголюбивого риса поглощает за сезон 20- 80 тысяч кубических метров пресной воды! На возделывание риса уходит около 15 процентов речного стока планеты. Однако только третью его часть забирают растения, остальная вода расходуется впустую - испаряется или уходит в почву.
Многолетние исследования, проведенные в Краснодарском крае, показали: чтобы надежно сократить расход воды, надо выровнять поверхности делянок чеков, на которых высажен рис. Если перекос плоскости чеков увеличится, например, с 5 до 10 сантиметров, то расход воды возрастет вдвое. Но дело не только в излишнем поливе. Резко колеблется урожайность. При отклонении поверхности чеков от среднего уровня на 3 сантиметра урожай составляет около 60 центнеров. Но когда перекос достигает 10 сантиметров, урожай падает вдвое.
Задача ясна - для сокращения затрат воды и, следовательно, расхода энергии нужно максимально выровнять поверхность чеков. На помощь планировщикам и водителям машин-скреперов пришли ученые Новочеркасского инженерно-мелиоративного института. Они установили посреди чека гелий-неоновый газовый лазер. Лазерный луч направляется на фотоприемник, прикрепленный к машинам мелиораторов. По показаниям прибора-индикатора водители управляют высотой рабочего органа скрепера, проводящего планировку поверхности. Предпосевные работы можно вести и ночью. В результате благодаря увеличению "горизонтальности" уменьшились затраты энергии на полив воды, а урожайность поднялась на 10 центнеров с гектара.
От фитотрона к теплице
Есть ли предел урожайности? В древности земледелец собирал с гектара всего по 3-4 центнера зерна. С появлением железного плуга урожай поднялся почти вдвое.
В начале 70-х годов средний сбор по стране составлял 18 центнеров с гектара. В то же время на Кубани удавалось получать 32-35 центнеров с гектара. А рекордного сбора добились в Киргизии. В пересчете на гектар он составил 126 центнеров!
В фитотроне при 16-часовом освещении и 70-суточном вегетационном периоде получают урожаи до 500 центнеров с гектара. Конечно, можно перейти на выращивание культур и в фитотронах, но это будет дорогостоящее дело.
Ведь сегодняшний исследовательский фитотрон - очень дорогое сооружение: герметичный бокс, искусственные освещение и почва, регулирование состава воздуха по влажности и содержанию С02, исключение различных болезнетворных бактерий, специальная подготовка семенного материала.
Пока в искусственных условиях - в специальных теплицах - выгодно выращивать только отдельные виды овощей. (Упрощенные фитотроны и называются теплицами.)
В 1929 году во Франции была запатентована ветроэлектростанция, одновременно являющаяся оранжереей.
А несколько лет назад в Испании, под Мадридом, этот проект воплотился в жизнь. Над участком земли площадью 20 гектаров была на некоторой высоте натянута прозрачная пленка. В центре гигантской теплицы поставили трубу высотой 200 метров. В ней смонтировали турбину мощностью 100 киловатт. Разогретая за день теплица должна создавать воздушную тягу и ночью, а инфракрасное излучение, проходящее через облака, не даст остановиться турбине и в пасмурный день. Получаемую электроэнергию можно использовать для освещения теплицы.