Страница 3 из 86
Сформулированная Н. Е. Жуковским теорема заключается в следующем: "Величина подъемной силы крыла на метр размаха является произведением плотности воздуха на циркуляцию скорости и на скорость полета аэроплана". Очевидно, что этот вывод - основа современного учения о подъемной силе крыла, фундамент теоретической аэродинамики. Без этого открытия невозможно было бы развитие авиационной науки.
После свершения Великой Октябрьской социалистической революции профессор Московского высшего технического училища Н. Е. Жуковский решительно стал на сторону Советской власти. Организованный им еще до революции кружок по изучению воздухоплавания успешно продолжал свои теоретические и практические исследования.
Ученики Н. Е. Жуковского не только основали школу, но и вели подготовку к созданию будущего Центрального аэрогидродинамического института (ЦАГИ). Решение об образовании национального русского центра авиации было принято с одобрения В. И. Ленина. Н. Е. Жуковский и А, Н. Туполев посетили Высший совет народного хозяйства и получили не только согласие на организацию института, но и финансовую помощь. Аэродинамическая лаборатория в МВТУ была вначале основной базой экспериментальных работ ЦАГИ, который в настоящее время является мировым центром авиационной науки и техники.
Придавая большое значение развитию авиации, Советское правительство в 1919 г, приняло решение о создании в Москве учебного заведения для подготовки инженерно-технических кадров. В сентябре того же года состоялось первое заседание совета авиационного техникума под председательством Н. Е. Жуковского, а в сентябре 1920 г. техникум был реорганизован в Институт инженеров Красного Воздушного Флота им. Н. Е. Жуковского. Позднее на его базе создается Военно-воздушная академия, носящая в настоящее время имя Н. Е. Жуковского.
Деятельность великого русского ученого, посвятившего свою жизнь исследованию вопросов теории авиации, была высоко оценена Советским правительством. Специальным постановлением Совета Народных Комиссаров от 3 декабря 1920 г., в котором Н. Е. Жуковский именовался "отцом русской авиации", он был освобожден от обязательного чтения лекций и получил право "объявлять курсы более важного научного содержания". Ученому устанавливался месячный оклад. Тем же постановлением учреждалась ежегодная премия Н. Е. Жуковского за выдающиеся труды в области математики и механики. Было также принято решение об издании трудов ученого.
В предисловии к переизданным в 1972 г. лекциям профессора Н. Е. Жуковского "Динамика аэропланов в элементарном изложении", которые он читал слушателям теоретических курсов авиации, А. Н. Туполев писал о великом вкладе Н. Е. Жуковского в создание нашей советской авиации, о том, что Николай Егорович Жуковский верил в новые силы страны и хотел идти вместе с этими силами. Он всегда оставался настоящим патриотом, глубоко любил свою Родину, радовался ее успехам, переживал неудачи и всегда хотел быть ей полезен. Жуковский был прекрасным учителем. Он учил просто, ясно, всегда чрезвычайно доброжелательно, и то, что хотел передать ученикам, западало им в душу не только как знание, но и как любовь к тому, что любил он сам. А любил он науку, авиацию и очень любил эксперимент, считая его совершенно необходимым. Н. Е. Жуковский был не только великим ученым, но и инженером "высшего ранга", поэтому его ученики не замыкались только в науке, а стремились к созданию оригинальных конструкций планеров, вертолетов, глиссеров, самолетов на основании научной теории и результатов эксперимента. Поэтому основанные на школе Николая Егоровича Жуковского авиационные институты - это не просто учебные заведения, а еще и научные организации, работающие над созданием советского воздушного флота.
А. Н. Туполев хотел, чтобы, получая памятный курс лекций, прочитанных Жуковским в 1913 г. и изданных в год Великой Октябрьской социалистической революции, каждый почувствовал то уважение и тепло к Николаю Егоровичу Жуковскому, которое сохранили к нему его ученики. Эти воспоминания А. Н. Туполева являются прекрасной характеристикой научных и личных качеств великого русского ученого.
Можно напомнить основные этапы развития научно-исследовательских работ в области аэродинамики самолетов отечественной авиации.
В первые послереволюционные годы бурное развитие аэродинамики как в теоретическом, так и в прикладном смысле, и в первую очередь в изучении пограничного слоя, получило свое практическое применение. Были заложены основы норм устойчивости и управляемости, изучены флаттер и бафтинг в применении к конкретным типам летательных аппаратов, разработаны серии новых скоростных и несущих профилей крыла с механизацией. Разработанные основы дозвуковой и трансзвуковой аэродинамики с введением в эксплуатацию новых аэродинамических труб позволили совершить скачок в летных данных самолетов, Этому способствовали и увеличение мощности двигателей, разработка воздушных винтов изменяемого шага, создание новых конструкционных материалов на основе алюминия и новых технологических процессов для обработки.
Как и во всякой науке, ведущая роль в решении задач в области аэродинамики принадлежала фундаментальным теоретическим исследованиям, на базе которых строились расчетные инженерные методы, составляющие основу прикладной теории. Корифеи советской аэродинамики, такие, как Н. Е. Жуковский, С. А. Чаплыгин, Б. Н. Юрьев, В. В. Голубев, М. В. Келдыш, С. А. Христианович, Г. П. Свищев, В. В. Струминский и многие другие, находились во главе прогресса авиации. Трудность прикладного использования теоретических исследований состояла в том, что теоретические решения могли быть найдены только для отдельных форм профилей, крыльев, тел вращения. Это означало, что почти для всех практически используемых в авиации форм из-за отсутствия в то время ЭВМ, позволяющих использовать численные методы, большая часть теоретиков была занята конкретными расчетами. Правильность базовой теории и приближенных методов решения требовали экспериментальной проверки подтверждения, а если, необходимо, то и экспериментальных поправок, что имело а имеет место и до настоящего времени.
Для таких проверок была построена экспериментальная труба ЦАГИ диаметром 3 м и затем вторая - диаметром 6 м. В создании экспериментальной базы ЦАГИ особенно велика роль А. Н. Туполева. Здесь, по мнению Г. П. Свищева, с полной силой проявился талант Андрея Николаевича как организатора крупного масштаба. Создание аэродинамических труб с такими размерами и высокими скоростями потока сделало возможным испытание крупных по размерам моделей, позволяющих точно моделировать формы самолетов, отрабатывать их аэродинамические характеристики, а часто испытывать и натурные элементы самолета, в том числе фюзеляж.
В числе первых достижений аэродинамиков тех лет была обклейка полотном гофра поверхностей фюзеляжа на самолете АНТ-4, что дало большой эффект по улучшению летных данных. В порядок допуска в воздух самолета в первый раз вмешался предшественник АТК ВВС, определивший, что без соответствующего свидетельства ЦАГИ ни одна машина не может первый раз подняться в воздух. От ЦАГИ летательный аппарат получает свой воздушный паспорт, дающий право на первый взлет.
Был создан справочник конструктора, в который были включены все разделы аэродинамики самолета: аэродинамика крыла и воздушных винтов, охлаждение моторов, аэродинамический расчет, устойчивость и управляемость, проверка на штопор, методика испытаний в аэродинамических трубах и методика летных испытаний.
Дальнейшим развитием этого направления было создание руководства для конструкторов, где давались рекомендации по вопросам от выбора геометрических форм самолета до получения результатов испытаний модели в аэродинамической трубе, позволяющие учесть особенности и детали реальной конструкции самолета.
Вторым направлением развития прикладной науки является накопление фактов. В аэродинамике, как и в любой науке, говорил А. М. Черемухин, факты для развития теории и прикладных методов расчета приносят познание явлений природы. Эти факты, как правильно сказано, узнаются из "неожиданных тел", возникающих при эксплуатации самолетов и их испытаниях, а также при изучении в аэродинамических трубах. На базе осмысления фактов идет разработка теории, а затем уже на базе теории и накопленных экспериментальных данных создаются прикладные расчетные методы.