Добавить в цитаты Настройки чтения

Страница 20 из 28

ГАН, МЕЙТНЕР И ШТРАССМАН

Мейтнер вслед за Ферми также решила обеспечить себя источником нейтронов для экспериментов. Для этого она выбрала бериллий, облучаемый гамма-лучами радия. Однако испускаемые нейтроны реагировали со всеми элементами по-разному.

Относительно тяжелые элементы, такие как золото или серебро, поглощали нейтроны. Но для легких элементов, таких как натрий или алюминий, это не было характерно. Мейтнер установила, что есть соотношение между кинетической энергией нейтронов — низкой из-за их низкой скорости — и процессом их поглощения. Эти медленные нейтроны известны также как термальные. Ферми открыл, что можно уменьшить скорость частиц до столкновения с целью, если на пути они встретят какое-нибудь вещество, содержащее водород (например, парафин). Если опустить источник нейтронов — или цель бомбардировки — в парафин, скорость нейтронов значительно снижается из-за столкновений, которые им приходится преодолевать. Меньшая кинетическая энергия должна была менять тип запускаемой ядерной реакции. Мейтнер и Ган смогли обнаружить отличия термальных нейтронов от быстрых в октябре 1934 года, одновременно с Ферми.

Для того чтобы найти трансурановые элементы, Ган и Мейтнер сначала облучали уран нейтронами. Так как в результате получались очень малые количества радиоактивных элементов в растворе, а в ту эпоху не были известны методы их осаждения, исследователям пришлось прибегнуть к носителю — веществу, которое должно иметь химическое сходство с получаемым продуктом и помогать осаждать его из раствора. В конце необходимо было отделить вещество от носителя.

Будучи убежденными в том, что трансурановые элементы схожи с рением, берлинские ученые выбрали в качестве носителя именно его. Результаты были вполне правдоподобными. Однако также исследователи обнаружили продукты других неожиданных процессов, для интерпретации которых у них не было теоретической модели. Они не могли выяснить, что за элемент появлялся в результате бета-излучения.

ПОГЛОЩЕНИЕ НЕЙТРОНОВ

При бомбардировке атомов нейтронами ядра могут эти нейтроны поглощать, что вызовет разные типы ядерных реакций,— так утверждали команда Ферми, Жолио-Кюри и берлинская группа в составе Мейтнер, Гана и Штрассмана. Поглощение вызывает, например, бета-распад с последующей трансмутацией химического элемента. Другая возможность, поданным Ферми, состояла в испускании протона или альфа-частицы. Все эти процессы можно было наблюдать при бомбардировке урана-238, наиболее распространенного изотопа урана. Под воздействием пучка нейтронов ядро урана-238 поглощает нейтрон, и элемент становится ураном-239. Начинается бета-распад, который можно записать следующим образом:

(n, e-).

Слева (n, нейтрон) указывается частица, вызвавшая процесс распада, справа записывается испускаемая частица; бета-распад предполагает испускание электронов, обозначаемых е-. Начало бета-распада предполагает промежуточную внутреннюю ядерную реакцию, во время которой нейтрон преобразуется в протон и образовавшийся электрон ускользает из ядра. В ядре остается 93 протона — на один больше, чем было, что соответствует элементу, который мы называем нептуний-293. Этот элемент также подвергается бета-распаду, в результате которого получается плутоний-239, характеризующийся наличием 94 протонов. В этой последовательности процессов атом теряет или приобретает один или несколько протонов, так что конечный элемент в периодической таблице занимает более близкие позиции относительно первоначального элемента. Предположив концепцию ядерного расщепления, Мейтнер открыла двери для гораздо более радикальных ядерных преобразований.

Исследования потребовали нескольких лет. В 1935 году к группе присоединился Фриц Штрассман. Он работал бесплатно, но другого места найти себе не мог, поскольку не симпатизировал нацистской идеологии. В этом смысле вся группа ученых находилась в оппозиции к существующему политическому режиму, так что Мейтнер, над которой нависла реальная угроза, чувствовала поддержку и защиту со стороны коллег. Наконец, они опубликовали результаты исследований, в которых говорили о двух типах бета-распада, вызванного нейтронной бомбардировкой урана. Позже был обнаружен третий вид распада, который, в отличие от предшествующих, не давал такой длинной цепи (см. рисунок 6).

В двух первых процессах Ган установил, что свойства элементов рядов распада соответствуют прогнозируемым. В результате химической трансмутации получались элементы, схожие с рением, осмием и иридием соответственно. Все указывало на то, что ученые на верном пути. Существование трансурановых элементов считалось практически подтвержденным, и из Рима даже пришли варианты названий для новых элементов: авсоний и геспезий. В статье, основным автором которой был Ган, можно прочесть:





«В общем химическое поведение трансурановых элементов [...] таково, что их положение в периодической таблице уже не вызывает сомнений. Кроме того, факт их химического отличия от уже известных элементов неоспорим».

Физик и лидер команды Мейтнер и химик Ган дополняли друг друга, и это помогало им успешно решать вопросы, возникающие при изучении урана. В работе Мейтнер большое значение имел анализ результатов с помощью химических методов. Если в результате химического анализа выяснялось, что вещество осаждается или что обнаруживается радиоактивное вещество, это позволяло точно определить химический элемент. Мейтнер, со своей стороны, должна была сформулировать теоретическую модель, описывавшую наблюдаемые процессы. В связи с полученными результатами возникало множество сомнений: например, и термальные, и быстрые нейтроны вызывали один из двух видов распада. Были и другие неразрешенные вопросы. Спустя много лет Мейтнер писала:

«Я постоянно чувствовала себя несчастной, потому что не могла понять, как может атомное число постоянно увеличиваться при той же массе. Я постоянно спрашивала об этом Вайцзеккера [одного из тогдашних ассистентов]. Как это может быть? Я была совершенно не удовлетворена результатами наших экспериментов до открытия расщепления».

РИС. 6

ПЕРЕД НАЦИСТСКОЙ УГРОЗОЙ

Пока Ган и Мейтнер были погружены в исследования, немецкое общество все более деградировало. Нацистская идеология захватывала все социальные слои, давление на еврейскую часть населения становилось более явным. Мейтнер не затронули законы, ущемлявшие права немецких евреев: во-первых, она сохраняла австрийское гражданство, во-вторых, у нее было много влиятельных друзей, в том числе Макс Планк, ходатайствовавший, чтобы она не лишилась места в институте. Свидетельством расположения легендарного физика, руководившего Обществом кайзера Вильгельма с 1930 по 1937 год, является то, что он неоднократно выдвигал Мейтнер на Нобелевскую премию. Она была кандидатом от Планка для получения Нобелевской премии по химии в 1936 году, в том же году Гейзенберг выдвинул ее кандидатуру для получения премии в области физики. Планк обсуждал свое предложение о выдвижении Лизы Мейтнер на Нобелевскую премию с немецким физиком Максом фон Лауэ (1879-1960):

«Я высказываюсь за выдвижение фройляйн Мейтнер на Нобелевскую премию. Я уже выдвигал ее кандидатуру в прошлом году с предложением разделить премию по химии за 1936 год между Ганом и Мейтнер. Но я согласен и с предложением, о котором мы говорили с Гейзенбергом».

Несомненно, получение премии способствовало бы международному авторитету Мейтнер и обеспечило бы ей большую безопасность, которая помогла бы избежать части трудностей, ожидавших исследовательницу впереди.