Страница 1 из 2
А. И. Хальясмаа
Диагностика электрооборудования электрических станций и подстанций
Введение
На сегодняшний день экономическое состояние энергетики России вынуждает принимать меры по увеличению сроков эксплуатации различного электротехнического оборудования.
В России в настоящее время общая протяженность электрических сетей напряжением 0,4–110 кВ превышает 3 млн км, а трансформаторная мощность подстанций (ПС) и трансформаторных пунктов (ТП) – 520 млн кВА. Стоимость основных фондов сетей составляет около 200 млрд руб., а степень их износа – около 40 %. За 90-е годы резко сократились объемы строительства, технического перевооружения и реконструкции ПС [1], и только последние несколько лет вновь наметилась некоторая активность в этих направлениях.
Решение задачи по оценке технического состояния электротехнического оборудования электрических сетей в значительной мере связано с внедрением эффективных методов инструментального контроля и технической диагностики. Кроме того, оно необходимо и обязательно для безопасной и надежной работы электрооборудования.
1. Основные понятия и положения технической диагностики
Экономическая ситуация, сложившаяся в последние годы в энергетике, заставляет принимать меры, направленные на увеличение сроков эксплуатации различного оборудования. Решение задачи по оценке технического состояния электротехнического оборудования электрических сетей в значительной мере связано с внедрением эффективных методов инструментального контроля и технической диагностики [2].
Техническое диагностирование (с греч. «распознавание») – это аппарат мероприятий, который позволяет изучать и устанавливать признаки неисправности (работоспособности) оборудования, устанавливать методы и средства, при помощи которых дается заключение (ставится диагноз) о наличии (отсутствии) неисправности (дефекта). Другими словами, техническая диагностика позволяет дать оценку состояния исследуемого объекта. Такая диагностика направлена в основном на поиск и анализ внутренних причин неисправности оборудования. Наружные причины определяются визуально [3].
Согласно ГОСТ 20911–89, техническая диагностика определяется как «область знаний, охватывающая теорию, методы и средства определения технического состояния объектов». Объект, состояние которого определяется, называется объектом диагностирования (ОД), а процесс исследования ОД – диагностированием.
Основной целью технической диагностики являются в первую очередь распознавание состояния технической системы в условиях ограниченной информации, и как следствие, повышение надежности и оценка остаточного ресурса системы (оборудования). В связи с тем, что различные технические системы имеют различные структуры и назначения, нельзя ко всем системам применять один и тот же вид технической диагностики.
Условно структура технической диагностики для любого типа и назначения оборудования представлена на рис. 1. Она характеризуется двумя взаимопроникающими и взаимосвязанными направлениями: теорией распознавания и теорией контролеспособности. Теория распознавания изучает алгоритмы распознавания применительно к задачам диагностики, которые обычно могут рассматриваться как задачи классификации. Алгоритмы распознавания в технической диагностике частично основываются на диагностических моделях, устанавливающих связь между состояниями технической системы и их отображениями в пространстве диагностических сигналов. Важной частью проблемы распознавания являются правила принятия решений.
Контролеспособностью называется свойство изделия обеспечивать достоверную оценку его технического состояния и раннее обнаружение неисправностей и отказов. Основной задачей теории контролеспособности является изучение средств и методов получения диагностической информации [4].
Рис. 1. Структура технической диагностики
Применение (выбор) вида технической диагностики определяется следующими условиями:
1) назначением контролируемого объекта (сфера использования, условия эксплуатации и т. д.);
2) сложностью контролируемого объекта (сложностью конструкции, количеством контролируемых параметров и т. д.);
3) экономической целесообразностью;
4) степенью опасности развития аварийной ситуации и последствий отказа контролируемого объекта.
Состояние системы описывается совокупностью определяющих ее параметров (признаков), при диагностировании системы они называются диагностическими параметрами. При выборе диагностических параметров приоритет отдается тем, которые удовлетворяют требованиям достоверности и избыточности информации о техническом состоянии системы в реальных условиях эксплуатации. На практике обычно используют несколько диагностических параметров одновременно. Диагностическими параметрами могут являться параметры рабочих процессов (мощность, напряжение, ток и др.), сопутствующих процессов (вибрация, шум, температура и др.) и геометрические величины (зазор, люфт, биение и др.). Количество измеряемых диагностических параметров также зависит от типов приборов для диагностики системы (которыми производится сам процесс получения данных) и степени развитости методов диагностирования. Так, например, число измеряемых диагностических параметров силовых трансформаторов и шунтирующих реакторов может достигать 38, масляных выключателей – 29, элегазовых выключателей – 25, ограничителей перенапряжения и разрядников – 10, разъединителей (с приводом) – 14, маслонаполненных измерительных трансформаторов и конденсаторов связи – 9 [5].
В свою очередь диагностические параметры должны обладать следующими свойствами:
1) чувствительностью;
2) широтой изменения;
3) однозначностью;
4) стабильностью;
5) информативностью;
6) периодичностью регистрации;
7) доступностью и удобством измерения.
Чувствительность диагностического параметра – это степень изменения диагностического параметра при варьировании функционального параметра, т. е. чем больше значение этой величины, тем чувствительнее диагностический параметр к изменению функционального параметра.
Однозначность диагностического параметра определяется монотонно возрастающей или убывающей зависимостью его от функционального параметра в диапазоне от начального до предельного изменения функционального параметра, т. е. каждому значению функционального параметра соответствует одно-единственное значение диагностического параметра, а, в свою очередь, каждому значению диагностического параметра соответствует одно-единственное значение функционального параметра.
Стабильность устанавливает возможную величину отклонения диагностического параметра от своего среднего значения при многократных измерениях в неизменных условиях.
Широта изменения – диапазон изменения диагностического параметра, соответствующий заданной величине изменения функционального параметра; таким образом, чем больше диапазон изменения диагностического параметра, тем выше его информативность.
Информативность – это свойство диагностического параметра, которое при недостаточности или избыточности может снизить эффективность самого процесса диагностики (достоверность диагноза).
Периодичность регистрации диагностического параметра определяется, исходя из требований технической эксплуатации и инструкций заводаизготовителя, и зависит от скорости возможного образования и развития дефекта.
Доступность и удобство измерения диагностического параметра на прямую зависят от конструкции объекта диагностирования и диагностического средства (прибора).
В различной литературе можно найти разные классификации диагностических параметров, в нашем случае для диагностики электрооборудования мы будем придерживаться типов диагностических параметров, представленных в источнике [6].