Страница 59 из 67
Поэтому все, скрытое от глаз этой дымкой, прекрасно получается на снимках, сделанных в инфракрасных лучах.
Замечательные свойства инфракрасных лучей не замедлили привлечь внимание изобретателей, работавших в области электронных приборов. Эти лучи давали возможность построить приборы, позволяющие видеть в полной темноте.
Задача изобретателей облегчалась тем, что современные кислородно-цезиевые фотоэлементы чувствительны именно к инфракрасным лучам. Они даже более восприимчивы к ним, чем к обычным видимым лучам.
Каждый объектив ночезрительного бинокля отбрасывает изображение рассматриваемых предметов на отдельный полупрозрачный кислородно-цезиевый фотокатод.
Фотокатоды делают полупрозрачными, то есть светочувствительный состав наносят прямо на стекло баллона с его внутренней стороны. Свет падает на кислородно-цезиевый слой сквозь стекло. Инфракрасные лучи выбивают из фотокатодов электроны. В темных местах изображений, где лучи слабы, из фотокатодов вылетает электронов меньше, а в светлых — больше. Но электроны, выбитые светом, вылетают не на освещенную сторону фотокатода, а на противоположную, теневую сторону, они летят внутрь баллона, в том же направлении, в каком идут световые лучи.
Получается нечто вроде эстафеты — инфракрасные лучи приносят изображение на фотокатод, а дальше его подхватывают электронные лучи.
За фотокатодами помещаются электронные линзы — электронные объективы, дающие электронные изображения фотокатодов на люминесцирующих экранах. На них тогда появляются видимые глазом изображения предметов, которые можно рассматривать в окуляры обоими глазами, как в театральном бинокле (рис. 109) с увеличением в 2–3 раза.
Рис. 109. Схема одной из трубок бинокля для видения в инфракрасных лучах.
Такой прибор получил название электроннооптического преобразователя — он преобразует невидимое изображение в инфракрасных лучах в видимое.
В таинственную область Галактики
Это замечательное достижение творческого гения человека с большим успехом было применено астрономами для исследования недоступных телескопу областей окружающей нас части Вселенной.
«Ночегляды», построенные тремя советскими учеными, астрономами А. А. Калиняком, В. Б. Никоновым и электрофизиком В. И. Красовским, позволили узнать, что находится позади темных туманностей, которые виднеются на небе в созвездии Стрельца.
Все окружающие нас звезды, как яркие и крупные, так и мельчайшие звездочки Млечного пути, образуют огромное скопление, которое называют Галактикой. В Галактике насчитывается свыше ста миллиардов звезд, и одна из них — наше Солнце.
Размеры звездного облака таковы, что даже быстролетный свет тратит на путешествие от края и до края этого облака почти сто тысяч лет.
Все звезды, входящие в состав Галактики, и наше Солнце в их числе, обращаются вокруг ее центра.
Уже много лет ученых интересует, — что находится в центре Галактики? Вокруг чего обращаются звезды? Узнать это до сих пор не удавалось, так как центральная область Галактики закрыта от наших взоров огромными непрозрачными тучами темной космической пыли. Эти тучи чернеют на фоне Млечного пути, как «угольные мешки», и мешают рассмотреть, что находится за ними.
Рис. 110. Одна из соседних галактик, на которую, как предполагают ученые, похожа наша Галактика.
Летом 1948 года астрономический электронный «ночегляд» был готов. Астрономы повезли свой прибор в Симеизскую обсерваторию в Крыму, чтобы с его помощью проникнуть в таинственную область Галактики. Если за пылевыми облаками находятся звезды, то может быть их инфракрасное излучение прорывается сквозь толщу космической пыли, и тогда «ночегляд» ею заметит!
В течение нескольких ночей астрономы исследовали небо в созвездии Стрельца и убедились, что позади темных облаков действительно расположено большое скопление ярких звезд. Если бы можно было убрать мешающие тучи пыли, мы видели бы в созвездии Стрельца яркое светящееся пятно овальной формы.
Дальнейшее усовершенствование электронных приборов для видения в инфракрасных лучах обещает дать еще больше сведений об этой, пока еще неизученной, области нашей Галактики, но даже то, что уже сделано, является замечательной победой новой отрасли астрономии, получившей название «астрономии невидимого».
Рис. 111. Один и тот же участок неба, сфотографированный в обычных лучах (наверху) и на пластинках, чувствительных к красным лучам (внизу).
Электронные и фотографические «ночегляды» помогли установить, что кроме сверкающих звезд, какие мы видим на небе, в мировом пространстве есть много несветящихся небесных тел — «темных звезд». Наша Галактика, по- видимому, населена небесными телами гораздо гуще, чем мы думали прежде. Электронные приборы уже начали во многом помогать старым оптическим системам — телескопам, а в некоторых случаях даже заменять их.
Дальнейшие успехи электронных ночезрительных телескопов — дело недалекого будущего. Первый опыт постройки такого телескопа был сделан в Советском Союзе в марте 1936 года.
Фотоэлементы с запирающим слоем
Электроника изучает и применяет фотоэлементы трех типов. О двух из них уже шла речь — это столетовские фотоэлементы, в которых используется внешний фотоэффект (электроны, выбитые светом, вылетают наружу — за пределы вещества фотокатода), и фотосопротивления, в которых используется внутренний фотоэффект (электроны, выбитые светом, остаются внутри вещества и уменьшают его сопротивление электрическому току).
Разработан еще третий вид светочувствительных приборов, называемых вентильными фотоэлементами или фотоэлементами с запирающим слоем. В них, как и в фотосопротивлениях, электроны, выбитые светом из оболочек атомов, не вылетают наружу, а остаются внутри вещества. Этим они похожи на фотосопротивления, но отличаются от них одной важной особенностью.
Фотосопротивления, как и столетовские фотоэлементы, работают только тогда, когда к ним присоединен источник тока (батарея). Свет, выбивая из вещества фотокатода электроны, тем самым облегчает прохождение тока через вакуум в столетовских фотоэлементах или через вещество в фотосопротивлениях.
Элементы с запирающим слоем не нуждаются в дополнительных источниках тока. Они сами служат источником тока. На них падает свет, и они дают ток. Эти фотоэлементы — генераторы тока, непосредственно преобразующие световую энергию в электрическую.
Для изготовления фотоэлементов с запирающим слоем первоначально применяли закись меди. Толстую пластинку красной меди прокаливали в электрической печи так, чтобы она покрылась массивным слоем закиси меди. Затем с одной стороны пластинки закись полностью счищали, а с другой — поверх слоя закиси наносили тончайшую прозрачную пленку какого-либо металла — той же красной меди или золота.
К изготовленному таким способом фотоэлементу присоединяли проводники — один к нижнему слою металла, а другой к верхнему, прозрачному слою.
Как только на поверхность прозрачного слоя падает свет, в фотоэлементе возникает электрический ток. Электроны, выбитые светом из молекул закиси меди, проскакивают в верхний прозрачный слой металла, а оттуда устремляются в проводник. Совершив путешествие по проводам, электроны возвращаются обратно в слой закиси меди, проникая в нее с теневой стороны и замыкая цепь. И вот в этом-то и скрыта странная особенность вентильных фотоэлементов.
Что заставляет электроны проделывать длинный кружной путь по проводам? Что мешает им вернуться в слой закиси тем самым путем, каким они вышли из нее, то есть просто перескочить из прозрачного слоя металла обратно в закись? Этот путь, казалась бы, наиболее короткий, но электроны почему-то путешествуют по проводам и возвращаются в слой закиси, так сказать, с «черного хода». Причина этого явления пока еще в точности не установлена.