Добавить в цитаты Настройки чтения

Страница 53 из 67



Рис. 100. Схема фотоумножения. Показано, как между эмиттерами возникает лавина электрона.

Поток электронов растет, как снежный ком.

Конечно, чтобы электрон был способен выбивать из эмиттеров новые электроны, он должен обладать достаточной энергией. Поэтому на каждый последующий эмиттер подается напряжение примерно на 100 вольт более высокое, чем на предыдущий. Кроме того, чтобы электроны попадали с одного эмиттера на другой, не сбивались с дороги, применяются различные системы управления при помощи электрических или магнитных полей.

На фотографии трубки Кубецкого видно, что трубка имеет 16 электродов. 2 из них — катод и анод, а 14 — эмиттеры (рис. 101).

Рис. 101. Фотоумножитель Кубецкого.

Какое же усиление могут дать эти 14 эмиттеров? Допустим, что каждый электрон, ударяясь о поверхность эмиттера, выбивает всего лишь по 3 вторичных электрона. Значит, каждый электрон, вылетевший из катода, выбьет из первого эмиттера 3 электрона.

От второго эмиттера их полетит уже 3 х 3 = 9, от третьего—27, от четвертого — 81, от пятого — 243. От девятого эмиттера в путь отправится 19 683 электрона, от двенадцатого — 531 441. После четырнадцатого эмиттера на анод попадает 4 782 969 электронов! Свыше четырех с половиной миллионов!

Одна трубка Л. А. Кубецкого может заменить множество усилительных ламп, которые обслуживают фотоэлементы других типов, усиливая их сигналы. Прибор Л. А. Кубецкого получил название фотоумножителя. Его автор был удостоен Сталинской премии.

Фотоумножители были значительно усовершенствованы профессорами П. В. Тимофеевым и С. А. Векшинским (рис. 102).

Рис. 102. Фотоумножитель Векшинского.

Зоркие помощники

Изобретения и усовершенствования, сделанные советскими учеными, намного улучшили фотоэлементы, и круг их обязанностей необычайно расширился.

Когда, например, полагается включать уличное освещение? Обычно это делается в заранее установленные часы. И в пасмурную погоду и безоблачным ясным вечером фонари вспыхивают на улицах в одно и то же время. Утром же они гаснут, когда захочется диспетчеру. Иной раз приходится видеть, как фонари горят до полудня. Это — напрасная трата энергии.

Теперь во многих городах Советского Союза за силой дневного света следят фотоэлементы. Как только становится действительно темно, они включают свет — в пасмурные дни и в узких улицах раньше, в ясные вечера и на площадях и набережных — позже. Утром фотоэлементы так же аккуратно гасят свет.

Фотоэлементы, помещенные внутри фабрично-заводских труб, контролируют и регулируют работу котельных топок. Густой дым затемняет, ослабляет свет фонарика, обслуживающего фотоэлемент. Фотоэлемент приводит в действие механизмы, управляющие топкой: прочищаются колосники, подается больше воздуха, устанавливается нормальный режим горения топлива.

На боевых кораблях фотоэлемент помогает соблюдать маскировку. Черные столбы дыма, вырывающиеся из труб, делают корабли заметными задолго до появления эскадры на горизонте. Фотоэлемент зорко следит, чтобы топливо сгорало без дыма.

С каждым годом расширяется применение контрольных и сигнальных фотоэлементов. Они становятся такими же привычными, как пишущая машина, электрическая лампочка, термометр, телефон, водопровод.

Искусственный глаз астронома

Астрономы уже давно задумывались, что хорошо бы в некоторых случаях заменить наблюдателя у телескопа автоматическим прибором.

Ученые знали, что света звезды достаточно для срабатывания фотоэлементов, но не умели заставить его отметить с точностью до нескольких тысячных долей секунды момент прохождения звезды через меридиан обсерватории.

Η. Н. Павлов, астроном и одновременно радиолюбитель, решил изобрести прибор, заменяющий наблюдателя. Ученый начал работу в 1934 году и вскоре узнал, что и за границей тоже конструируют электрический наблюдатель. Опыты неизменно заканчивались неудачей. Изобретатели не находили способа создать искусственный глаз, который мог бы соперничать с человеческим.



Советский ученый продолжал работать, он был уверен в успехе, потому что он жил и трудился в советской стране.

Первый прибор, построенный Павловым, был слеповат, он видел фонари, но не замечал звезд. Чувствительность заграничных фотоэлементов, выписанных в обсерваторию, была слишком мала. Слабые лучи звездного света не оказывали на них никакого действия. Перышко самозаписывающего аппарата, соединенного с фотоэлементом, чертило унылую, совершенно прямую линию.

Вскоре советские ученые изобрели новый тип фотоэлементов. Павлов приобрел его и поставил в свой прибор.

В декабре 1935 года Η. Н. Павлов приступил к опыту. Для начала была выбрана самая яркая звезда нашего неба — Сириус.

Лучу звездного света надлежало скользнуть в астрономическую трубу и сквозь узкую щель упасть на фотоэлемент. В это мгновение в фотоэлементе возникнет слабенький электрический ток. Усиленный радиолампами, этот ток должен подействовать на магниты самозаписывающего прибора — хронографа. Магниты притянут якорек, якорек щелкнет, и прикрепленное к нему перышко поставят на телеграфной ленте зубчик.

Наступал решительный момент: Сириус приближался к меридиану обсерватории. Профессор Павлов следил за медленным перемещением звезды в поле зрения инструмента.

Вот еще мгновение! Еще полсекунды…

Громко щелкнули магниты хронографа. Перышко дрогнуло и поставило на ленте отчетливый зубчик. Это Сириус своим лучом расписался в прибытии на меридиан обсерватории. Прибор впервые «увидел» звезду.

Правда, Сириус очень ярок, заметить такую звезду — не велика заслуга, но, как говорится, лиха беда начало!

Ученый продолжал совершенствовать свое изобретение, и два года спустя его искусственный глаз по чувствительности сравнялся с человеческим.

В 1946 году работа в основном была закончена. Профессор Павлов опубликовал свое изобретение.

«Электрический глаз» астронома имеет вид круглой коробки величиной с литровую банку. Он привинчен к окуляру астрономического инструмента и составляет с ним одно целое.

В тот момент, когда звезда проходит через меридиан обсерватории, луч ее света падает на фотоэлемент, и на ленте самозаписывающего прибора появляется зубчик. Второе перышко самозаписывающего прибора, соединенное с точными астрономическими часами, отмечает на той же ленте секунды.

Астроном берет ленту с отмеченными сигналами звезды и часов, спокойно, не торопясь, измеряет промежуток между сигналами и определяет, насколько ошибаются — спешат или отстают — астрономические часы. А по этим часам потом проверяют ход всех часов Советского Союза.

Электрический глаз, в отличие от живого наблюдателя, никогда не спешит, не волнуется, не устает, не допускает ошибок.

Советские астрономы выиграли битву за точность и обеспечили отечественной Службе времени более надежную работу, чем в любой капиталистической стране.

Правительство СССР присудило профессору Η. Н. Павлову Сталинскую премию.

«Великий немой» заговорил

Как только на экранах кинотеатров появились первые «немые» кинофильмы, изобретатели начали думать, — нельзя ли сделать слышимой речь героев фильма? Некоторые предприимчивые владельцы кинотеатров решали эту задачу наипростейшим способом, — они нанимали актеров-чтецов, усаживали их позади просвечивающего экрана, и актеры, глядя на экран, говорили те слова, какие должны были произносить действующие лица в кинофильме. Зрители слышали голоса за экраном, и наиболее легковерным казалось, что картина «говорящая».

Такое «озвучивание» картины, разумеется, не решало задачи создания звукового кино.