Страница 15 из 67
Но при этом наблюдается важная закономерность: количество электричества может превысить наименьшее либо ровно в два раза, либо в три раза, но ни в коем случае не в полтора или в два с половиной раза. Иначе говоря при электролизе на каждые 6,023∙1023 молекул разлагаемого вещества порция электричества может быть больше 96500 кулонов только в целое число раз.
Значит, на каждую молекулу при разложении ее обязательно приходится расходовать целое число совершенно одинаковых зарядов электричества.
Стало быть, существует такая порция электричества, которая больше делиться не может, поэтому встречается обязательно целое, но не дробное число раз.
Из прерывного, атомного строения вещества необходимо следует и прерывное строение электричества.
Ученые сделали вывод, что электричество состоит из каких-то необычайно маленьких, уже неделимых порций, являющихся как бы «атомами» электричества.
Видимо, величину этой наименьшей и неделимой порции электричества можно определить, разделив число израсходованных кулонов на число разбитых молекул: 96500∙6,023∙1023 = 1,60∙10-19 кулона.
Это и есть заряд мельчайшей, известной современной науке порции отрицательного электричества — электрона.
Такое название этой «наименьшей порции» электричества было дано ей в 1891 году. Слово электрон быстро вошло в обиход и окончательно утратило всякую связь со своим прежним греческим значением (янтарь).
Итак, электрон получил признание и имя, но знали о нем еще слишком мало.
Он оставался таинственным незнакомцем, неизвестно где обитающим, невесть откуда появляющимся и гак же загадочно ускользающим.
Магнит и луч
Физики с новой энергией взялись за исследование явлений, происходящих в катодной трубке.
Катодный луч, который правильнее называть потоком электронов, повинуется влиянию магнита. Когда к катодной трубке подносят магнит, то под бездействием магнитного поля пути электронов, летящих от катода, искривляются, и электронный луч изгибается дугой.
Физики решили воспользоваться воздействием магнитного поля на поток электронов в разрядной трубке для того, чтобы добыть нужные сведения о массе и заряде электрона. Они рассуждали так: предположим, что в магнитном поле летит некая маленькая частичка. Если она не имеет никакого заряда, то магнитное поле на нее не подействует: частичка полетит по прямой линии.
Если же частичка несет электрический заряд, это равноценно электрическому току, ее путь в магнитном поле искривится. Чем больше будет заряд, тем сильнее отклонится в сторону частица. Но каждая частичка обладает также и некоторой массой и, следовательно, инерцией. Чем тяжелее будет частичка, тем труднее заставить ее свернуть с прямого пути. Значит, заряд содействует, а масса — инерция противодействуют искривлению пути электронов в разрядной трубке.
Для физиков это оказалось довольно досадным обстоятельством. Ведь частички с большим зарядом и большой массой отклоняются в магнитном поле точно так же, как и частички с малым зарядом и малой массой. Отличить, где какая масса или где какой заряд — невозможно.
Наблюдая отклонение электронов в магнитном поле, ученые не смогли определить отдельно ни массы, ни заряда электрона, а только узнали, какой заряд приходится на единицу массы электрона. Иными словами, удалось найти отношение заряда электрона к его массе.
Для точных измерений построили особую катодную трубку. В этой трубке, неподалеку от катода, поместили металлическую пластинку с небольшим отверстием в центре.
Металлическая пластинка предназначалась для того, чтобы задерживать большую часть электронов. Через отверстие в пластинке мог прорваться только узкий пучок лучей. Вот этот тонкий, как проволочка, пучок лучей и послужил ученым основой для необходимых опытов.
С помощью своих приборов физики измерили: магнитное поле, величину искривления электронного луча под влиянием магнита и разность потенциалов, приложенную к катодной трубке (от этой разности зависит скорость электрона).
Оказалось, что заряд электрона, выраженный в кулонах, больше его массы, выраженной в граммах, почти в 1760 тысяч раз. Иначе говоря, физики получили такую формулу:е/м = 1,76∙103 кулонов/грамм, где буквой е обозначен заряд электрона, а буквой м — его масса. В отдельности же величины еи мпо-прежнему оставались неизвестными.
Правда, вычисление, сделанное на основании опытов Фарадея, дало величину заряда электрона: е = 1,60∙10-19 кулона. Подставив это значение ев формулу, можно узнать, чему равно м — масса! Для этого надо 1,60∙10-19 разделить на 1,76∙103, и мы получим 9,1∙10-28 грамма. Это и будет масса одного электрона.
Однако никто тогда не знал и никто не доказал, что наименьшая порция электричества, которая переносится одним атомом при электролизе, равна заряду электрона, летящего в катодном луче. Это еще предстояло доказать, а потому величина массы электрона в 9,1∙10-28 грамма нуждалась в подтверждении и проверке опытом.
Влияние света на искру
В восьмидесятых годах прошлого столетия замечательный русский ученый, профессор Московского университета Александр Григорьевич Столетов решил разобраться в одном странном явлении, которое было замечено немецким физиком Герцем.
Во время одного из своих опытов Герцу показалось, что свет электрической искры, проскакивающей между шариками в электрической машине, облегчает образование искры в другом приборе. Герц проверил свое наблюдение и установил, что такое же действие оказывает на искру электрическая дуга. Ее яркий сильный свет, падая на искровой промежуток, как-то помогает появлению искр. На свету искры проскакивают при меньшем напряжении, чем в отсутствие дугового освещения.
Причины этого Герц не нашел и сообщение о своих наблюдениях опубликовал без всякого объяснения.
В том, что связь между световыми и электрическими явлениями существует, Столетов не сомневался, но искру он считал неподходящим объектом исследования. Искра вспыхивает на мгновение, быстро гаснет. Измеряя что-либо при столь скоротечном явлении, легко ошибиться, а исследовать, не измеряя, — бессмысленно.
Если свет облегчает электрическому току путь через воздух, думал Столетов, то его влияние должно сказаться и на слабом токе обычной гальванической батареи, а ток от гальванической батареи можно измерять с большой точностью. Для этого существуют чувствительные гальванометры.
Свет рождает ток
Вместе со своим помощником, талантливым изобретателем И. Ф. Усагиным, Столетов построил задуманный прибор. Они вырезали из цинковой пластинки круг диаметром в 22 сантиметра, тщательно очистили его и укрепили стоймя на вертикальном изолированном штативе. Затем из металлической сетки они вырезали круг того же размера и натянули его на проволочный обод. Сетчатый кружок укрепили на стойке так же, как и цинковый.
Из лабораторного проекционного фонаря с электрической дугой Усагин вынул все линзы. Столетов знал, что стекло задерживает и поглощает ультрафиолетовые лучи, способствующие образованию электрической искры. Была также подготовлена новая батарея и подобран гальванометр (рис. 37).
Рис. 37. Когда луч света, пронизывая сетчатый электрод, падал на цинковый кружок, через воздушный промежуток между электродами шел ток.
20 февраля 1888 года А. Г. Столетов приступил к опытам. На лабораторном столе находился проекционный фонарь. В двадцати сантиметрах от него, поперек светового пучка поставили сетчатый кружок; сразу же за ним, примерно на расстоянии в двадцать миллиметров, поместили цинковый кружок. Таким образом, когда зажигали фонарь, его луч пронизывал сетчатый кружок и падал на цинковый, то есть освещал сразу оба кружка.