Добавить в цитаты Настройки чтения

Страница 8 из 31

Поль Дирак

С того момента в физике случился невероятный поворот — и в научной жизни Дирака тоже, поскольку он наконец получил возможность сконцентрироваться на «основополагающих» проблемах. Среди молодых и самых блестящих физиков началось настоящее соревнование за выстраивание нового видения природы, которое объяснило бы поведение микроскопического мира и для которого интуиция больше не являлась хорошим советником. В результате такого соревнования разные группы и исследователи получили независимо друг от друга одинаковые результаты — позже или раньше всего на несколько месяцев или даже на несколько недель.

Между 1925 и 1927 годами в трех странах появились три разные по виду формулировки новой квантовой теории: в Геттингене (Германия) Гейзенберг, Борн и Йордан разработали «матричную механику», в Цюрихе (Швейцария) Шрёдингер создал «волновую механику», а в Кембридже (Англия) Дирак представил собственное видение новой теории. Упомянутых физиков, а также Паули, можно считать основателями квантовой механики. Другие ученые тоже работали в данной области и внесли вклад в ее развитие; но эти шестеро первыми заложили фундамент нового научного здания.

ГЕЙЗЕНБЕРГ: РОЖДЕНИЕ КВАНТОВОЙ МЕХАНИКИ

Сначала Поль Дирак не смог осознать истинное значение статьи Гейзенберга. Напротив, она показалась ему преувеличенно сложной и несколько искусственной. Только углубившись в детали, он понял смысл революционного изменения, предложенного немецким физиком. Дирак начал усиленно изучать работу Гейзенберга, пытаясь понять ее и одновременно улучшить и превзойти.

Предложенная Гейзенбергом новая теория на самом деле противоречила принципу относительности, поэтому главной целью Дирака стало расширить данную теорию и снять это противоречие. Подобное намерение было исключительно амбициозным для того времени, даже для самого Дирака. Скоро ему пришла в голову главная идея, позволившая переформулировать теорию Гейзенберга. Она была связана с одним из аспектов теории, который сам немецкий физик считал достаточно спорным: некоммутативность переменных.

В чем заключалась новая теория, предложенная Гейзенбергом? Что сразу же сделало ее столь революционной? Косвенно ответ на данный вопрос давался во вступлении к статье:

«[Речь идет о том, чтобы] заложить основы квантовой механики, основываясь исключительно на соотношениях между величинами, которые являются, в принципе, наблюдаемыми».

В классической теории понятие траектории частицы четко задано, и траектория даже может быть определена. Модель атома Бора состоит из электронов, движущихся вокруг ядра по определенным траекториям — орбитам электрона.

ГЕЙЗЕНБЕРГ И ПРИНЦИП НЕОПРЕДЕЛЕННОСТИ

В 1925 году Вернер Гейзенберг (1901-1976) опубликовал основополагающую статью, которая ознаменовала рождение квантовой механики.

Затем с Максом Борном и Паскуалем Йорданом он разработал матричную квантовую механику. В 1927 году Гейзенберг сформулировал принцип неопределенности, который выражается формулой

Δκ - Δρ ≥ ђ/2.





В квантовой механике этот принцип устанавливает предел точности, с которой может быть измерена пара величин, например местоположение и импульс. Принцип неопределенности, лежащий в основе «копенгагенской интерпретации» квантовой теории, является одним из основополагающих принципов современной физики. Он косвенно заключает в себе объяснение взаимодействия частиц. Принцип Гейзенберга не является ограничением, связанным с погрешностью измерений; наоборот, он — важнейшее следствие квантовой теории. Даже в случае идеального опыта принцип неопределенности все равно будет действовать.

Гейзенберг получил Нобелевскую премию в 1932 году за «создание квантовой механики». Немецкий физик также работал над квантовой теорией излучения и первым ввел понятие «изоспина» в ядерном взаимодействии. Несмотря на трудности, с которыми он столкнулся в период фашизма, Гейзенберг решил остаться в Германии во время Второй мировой войны и был вынужден участвовать в немецкой ядерной программе. Это был самый противоречивый период его жизни. В последующие годы он сконцентрировал усилия на развитии науки в Германии, участвуя в конференциях и публикуя научные труды. Как и Эйнштейн, и другие физики после него, Гейзенберг посвятил последние годы поиску единой формулы, описывающей фундаментальные взаимодействия.

Идея Гейзенберга заключалась в радикальном изменении модели Бора. Он полагал, что местоположение, скорость и траектория не являются напрямую измеряемыми величинами, и следовательно, их нужно заменить на другие, имеющие более удовлетворительную квантовую интерпретацию — такие, например, как энергетические уровни и амплитуда перехода. С помощью этой основополагающей идеи Гейзенберг рассмотрел простую ситуацию с одномерным гармоническим осциллятором, которым являются, например, маятник или груз на пружине, и доказал, что описание динамических свойств (таких как положение или скорость частицы) требует введения операторов, зависящих от целых чисел (квантовых чисел), связанных с переходом от одного определенного квантового состояния к другому определенному квантовому состоянию.

Из этой зависимости от двух показателей следовало, что изначальные величины можно представить в виде строгой таблицы чисел, составленной из строк и столбцов. Такая конфигурация устанавливала более чем странное свойство: результат не обладал свойствами коммутативного умножения. Другими словами, итоговый результат зависел от порядка сомножителей. Сначала Гейзенберг посчитал данный результат ошибкой, недостатком теории, который следует устранить. И все же он рискнул послать статью своему научному руководителю, Максу Борну, который немедленно решил опубликовать ее.

НА СЦЕНУ ВЫХОДИТ ДИРАК

То, что Гейзенберг считал слабым местом новой теории, Дираку казалось наиболее важной ее идеей. Он детально изучил классическую механику и формализм Гамильтона и прекрасно знал о существовании переменных и величин, которые не обладают свойствами коммутативного умножения. Но можно ли было провести аналогию между новыми квантовыми величинами Гейзенберга и переменными классической теории? Ответ на данный вопрос пришел Дираку внезапно, когда он вспомнил о «скобках Пуассона». Позднее он рассказывал:

«Это произошло во время одной из моих воскресных загородных прогулок в октябре 1925 года. Я не мог выкинуть из головы комбинацию квантовых переменныхху — ухи внезапно вспомнил о конструкции, называемой «скобками Пуассона», которую достаточно часто использовала классическая механика. Вернувшись домой, я перечитал все свои записи и имевшиеся книги, чтобы разрешить собственные сомнения, но все было напрасно. Ночью я практически не сомкнул глаз. На следующий день с самого раннего утра я отправился в библиотеку и там нашел то, что искал, — в «Аналитической динамике» Уиттекера, которую я детально изучал в прошлом».

После нескольких недель упорной работы Дирак вывел искомое соотношение:

xy - yx = ih/2π [x,y].

Это уравнение напрямую связывало квантовые величины, или операторы Гейзенберга, с классическими переменными, введенными благодаря скобкам Пуассона, [х, у]. В уравнении использовалась постоянная Планка h, коэффициент 2π и мнимая единица i = √-1. Уравнение можно было записать с помощью «редуцированной постоянной Планка», равной

ħ = h/2π

Данное понятие было введено Дираком в 1930 году.

Несмотря на проявленную ученым сдержанность в отношении принципа соответствия Бора, этот самый принцип представал здесь как основа теории. Соответствие между квантовыми переменными и классическими, а также Гамильтонов формализм быстро привели Дирака к его новой теории. Все обретало смысл, а результаты и основополагающие принципы, такие как принцип сохранения энергии и правило частот Бора, находили естественное объяснение.