Добавить в цитаты Настройки чтения

Страница 18 из 26



А теперь представьте себе гораздо большую совокупность осцилляторов и, как и ранее, представьте ее в виде клуба бегунов, члены которого весьма различаются между собой по степени физической подготовки. Правило взаимодействия заключается в том, что каждый бегун смотрит на всех остальных бегунов, подсчитывает предположительную коррекцию своей скорости относительно каждого из остальных бегунов и усредняет вычисленные таким образом величины, чтобы получить фактическую величину коррекции. Допустим, например, что в какой-то момент эти бегуны образовали достаточно плотную группу. Правило Курамото говорит лидеру забега о том, что он должен замедлить свой бег относительно предпочтительной для себя скорости, что представляется вполне благоразумным, поскольку в данный момент он опережает всех остальных бегунов. Бегуну, находящемуся в середине этой группы, поступают противоречивые сообщения: некоторые из них рекомендуют ему ускорить свой бег, тогда как согласно другим ему следовало бы замедлиться. Бегун, замыкающий эту группу, получает от своих товарищей призывы ускорить бег.

Все эти корректировки происходят раз за разом, осциллятор за осциллятором. Чтобы сделать задачу такой самокоррекции более интересной, предположим, что участники этого забега договорились начать его с произвольных мест на дорожке. Иными словами, поначалу все бегуны распределены по всей длине дорожки совершенно случайным образом.

Даже если группа сформируется, вовсе не обязательно, что самые сильные бегуны окажутся в ее главе, то есть возможна любая расстановка бегунов в группе. В течение всего времени группа будет продолжать переформировываться и, по мере того как бегуны будут занимать в ней места согласно своим физическим возможностям, будут меняться лидеры группы.

Совсем не очевидно, во что все это выльется на достаточно продолжительном отрезке времени. Самые сильные бегуны могут значительно оторваться вперед от основной группы, тогда как самые слабые бегуны будут плестись далеко в хвосте. Более того, может даже не сформироваться основная группа как таковая. Разброс скоростей бегунов может оказаться столь значительным, что бегуны распределятся по всей длине дорожки. В таком случае все они будут принимать от своих партнеров по забегу столь противоречивые сообщения («беги быстрее», «беги медленнее»), что корректировки скорости вообще прекратятся и каждый будет бежать с наиболее предпочтительной для себя скоростью.

Анализируя столь запутанную ситуацию, Курамото посчитал целесообразным количественно охарактеризовать степень синхронизации с помощью одного числа, которое он назвал параметром порядка.

Интуитивно, когда участники забега бегут плечом к плечу, это представляет собой более тесную форму синхронизма, чем в случае, когда они находятся на значительном удалении друг от друга, и поэтому заслуживают более высокого «балла за синхронизм», то есть должны характеризоваться более высоким значением параметра порядка. Числовое значение параметра порядка всегда находится в диапазоне от 0 до 1 и вычисляется с помощью математической формулы, которая зависит от относительного положения каждого из бегунов. В одном крайнем случае, когда все бегуны пребывают в идеальном синхронизме, то есть бегут «в унисон», параметр порядка равняется 1. В другом крайнем случае, когда все бегуны распределены случайным образом по всей длине беговой дорожки, параметр порядка равняется 0.



В отличие от Уинфри, Курамото не использовал компьютер, чтобы получить примерную оценку того, как такая система будет вести себя. Он полагался исключительно на свою интуицию. Это делает его догадку относительно конечного исхода еще более провидческой: Курамото предположил, что на достаточно продолжительном отрезке времени такая популяция всегда перейдет в как можно более устойчивое для себя состояние. Участники забега будут продолжать бежать, но их относительные позиции в группе не будут изменяться, поэтому параметр порядка будет оставаться неизменным. Более того, сама по себе группа выйдет на некую компромиссную скорость, определяемую членами этой группы. Курамото предположил, что эта скорость также должна оставаться постоянной.

В своем смелом математическом порыве Курамото стремился отыскать лишь такие решения своих уравнений, которые отвечали его интуитивной догадке. Если у какого-либо решения не было постоянного параметра порядка и постоянной скорости группы, такое решение не интересовало Курамото. Он знал, что ищет, а на все остальное он просто не обращал внимания. Это был весьма смелый способ рассуждений, поскольку, если бы истина находилась не там, куда двигался Курамото, руководствуясь своей интуицией, он никогда не отыскал бы эту истину. Другая опасность заключалась в том, что решений, которые интересовали Курамото, могло бы не существовать вообще. Тем не менее он предположил, что такие решения существуют, и поставил перед собой цель найти их. Чтобы обеспечить себе максимальный простор для маневра, Курамото не указал заранее, какими именно должны быть значения параметра порядка и скорости группы – они просто должны быть постоянными. Определить их значения было одной из составляющих задачи, которую ему предстояло решить.

Он пришел к выводу, что такая система может удовлетворять его требованиям двумя разными способами. Параметр порядка мог равняться нулю всегда; это означало, что соответствующая популяция абсолютно и навсегда дезорганизована. Никакая группа в ней никогда не сформируется. Вы будете просто видеть бегунов, движущихся с самыми разными скоростями, причем эти бегуны будут рассредоточены по всей длине беговой дорожки. Такая система будет полностью рассинхронизирована. Как ни странно, это «некогерентное состояние» представляет собой исход, возможность которого нельзя исключить никогда, сколь бы разными или одинаковыми по уровню своей физической подготовки ни были участники забега. Даже если уровень физической подготовки всех участников забега одинаков, некогерентность может сохраняться все время, если она установилась изначально. Интуиция подсказывает, что участники забега не ставят перед собой цели бежать общей группой и с одинаковой скоростью, поэтому «по умолчанию» каждый из них бежит с наиболее комфортной для себя скоростью, а популяция в целом остается такой же дезорганизованной, как и прежде. Другой возможностью является «частично синхронизированное» состояние, которое характеризуется наличием трех групп: синхронизированная группа бегунов, имеющих некий средний уровень физической готовности; более медленная, рассинхронизированная стайка «слабаков»; и более быстрая, также рассинхронизированная стайка сильных бегунов. В отличие от случая некогерентности, такое состояние возможно не всегда. Курамото пришел к выводу, что существование такого состояния возможно лишь до определенного порога разнородности. Если колоколообразная кривая оказывается шире, чем этот порог (а это означает, что состав клуба бегунов чересчур разнороден), такое частично синхронизированное состояние пропадает. Из этого можно сделать вывод, что в популяции светлячков или клеток мозга осцилляторы должны быть достаточно однородны; в противном случае синхронизация вообще невозможна.

Одним махом Курамото «реабилитировал» и Винера, и Уинфри. Частично синхронизированное состояние является именно тем, что имел в виду Винер, когда он моделировал альфа-ритм мозговых волн. Узкий пик в центре спектра Винера соответствует синхронизированной группе, а «хвосты» по обе стороны от пика соответствуют рассинхронизированным осцилляторам, слишком медленным или слишком быстрым, чтобы можно было обеспечить их синхронизм с основной группой. Фазовый переход, обнаруженный Уинфри, был, по сути, то же самое, что и порог, обнаруженный Курамото. Как поняли они оба, синхронизированная группа не может образоваться, если соответствующая популяция не окажется в достаточной степени однородной. Этот важный момент Винер упустил из виду.