Добавить в цитаты Настройки чтения

Страница 6 из 17



К счастью, возможности нашей долговременной памяти быстро расширяются по мере взросления, в отношении и длительности, и сложности наших воспоминаний, поскольку мы начинаем всё лучше понимать, как устроен окружающий мир и на что следует обращать внимание. Основы долговременной автобиографической памяти закладываются в течение первых лет жизни, но основные мозговые структуры, принимающие участие в работе памяти, – гиппокамп и близкие когнитивные структуры – продолжают развиваться вплоть до взрослого возраста. Эти данные способствовали возникновению понятия «затянувшаяся юность» (англ. extended adolescence), поскольку мозг продолжает активно развиваться как минимум до 25 лет.

Итак, осознав, что мозг младенца еще не до конца развит и попросту не готов играть в высшей лиге воспоминаний, мы поймем и примем реальность и необходимость инфантильной амнезии.

Такой большой, но такой недоразвитый. Непропорционально большие головы милых крох хранят огромный потенциал. Их жирный мозг, которому предстоит стать еще жирнее (ваш мозг примерно на 60 % состоит из жира), представляет собой самую сложную известную нам систему во Вселенной, и заключает в себе исходные данные о том, кем станет ребенок.

Как мы уже сказали, в первые годы жизни человеческий мозг претерпевает колоссальные физические изменения. Захотев разузнать, в чем именно они заключаются, группа ученых во главе с Ребеккой Никмейер из Университета Северной Каролины воспользовалась возможностями высокотехнологичной нейровизуализации, чтобы заглянуть в мозг 98 детей[17]. Исследователи имели возможность проследить за развитием многих из них с возраста 2–4 недель до 2 лет. В ходе этого исследования, опубликованного в 2008 г., детей помещали в аппарат для так называемой функциональной магнитно-резонансной томографии, с помощью которого можно получить трехмерное изображение физических структур мозга. Все это больше похоже на научную фантастику, и я советую всем, кто подходит по установленным требованиям, поучаствовать в экспериментах с использованием нейровизуализации. Найдите информацию о местных исследовательских центрах, и, возможно, вам удастся заглянуть в собственный мозг! Я сама участвовала в таких исследованиях, и, естественно, сразу же сделала полученное изображение своим аватаром на Facebook. Мне даже сказали, что у меня очень сексуальные мозговые желудочки.

Вернемся к разговору о детском мозге. Полученные учеными данные поразительны. За первый год жизни общий объем мозга младенцев увеличился на 101 %, и еще на 15 % – за последующий год. Это означает, что их мозг вырастает более чем в два раза. Если сделать выборку по времени проведения томографии, оказывается, что мозг младенца в возрасте от 2 до 4 недель составляет лишь 36 % от его общего взрослого объема, 72 % у годовалого ребенка и 83 % у ребенка в возрасте 2 лет. Если продолжить временную шкалу за рамки этого основополагающего исследования, нужно отметить, что по данным, полученным группой ученых во главе с профессором Верном Кавинессом из Гарвардской медицинской школы[18], к 9 годам мозг достигает 95 % своего конечного объема и лишь к 13 годам формируется полностью. Темпы роста объемов мозга достаточно точно совпадают с тем, как в ходе взросления развивается наша память.

Однако, хотя детский мозг очень быстро растет, в то же время в нем происходит масштабный нейрональный прунинг. Это значит, что исчезают отдельные нейроны (клетки мозга). Этот процесс начинается почти с самого рождения и заканчивается к началу пубертатного периода. По мнению Майи Абиц[19] и ее коллег, у взрослых, по сравнению с новорожденными, значительно (на 41 %) меньше нейронов в важных отделах мозга, играющих ключевую роль в мышлении и работе памяти, в том числе в медиодорсальном ядре таламуса. Если бы вы увидели процесс нейронального прунинга, не зная, что происходит на самом деле, вы бы наверняка с горечью предположили, что человек, в мозг которого вы заглянули, вот-вот скончается от страшной болезни головного мозга – все эти прекрасные, похожие на галактики скопления нейронов исчезают без следа. Но все идет по плану: быстрый рост мозга влечет за собой необходимость в быстрой очистке. Этот процесс повышает производительность мозга. Он растет, и его работа оптимизируется. Рост – оптимизация. Рост – оптимизация. Поэтому, несмотря на то что общий размер и объем мозга увеличивается, число нейронов в нем уменьшается, чтобы очистить место для самой важной и долгосрочной информации.

Пока мозг теряет клетки и увеличивается в размерах, меняется, по-видимому, и способ установления контактов между нейронами. Как объясняется в третьей главе, нейроны – это клетки нашего мозга, которые перерабатывают и передают информацию посредством электрических и химических сигналов. Связи между ними, называемые синапсами, часто считают отражением процессов обучения, в том числе тех, которые позволяют нашей рабочей памяти группировать обрывки информации. В процессе синаптогенеза – формирования синапсов – создаются связи, которые образуют физическую сеть, объединяющую ассоциирующиеся друг с другом понятия, например: Starbucks, зеленый, кофе, бариста, интернет.

Согласно исследованию этого феномена, проведенному Питером Хаттенлочером[20], нейробиологом из Чикагского университета, в младенчестве образуется избыточное количество нейронов, повышенная плотность которых сохраняется в позднем детстве и в юности. После этого наступает период нейронального прунинга, обычно заканчивающийся к середине подросткового периода. Это означает, что мы начинаем свою жизнь с огромным количеством нейронов и способностью устанавливать бесчисленное множество межнейронных связей, которая сохраняется и в детстве. Однако чем старше становится ребенок, тем лучше его мозг понимает, какие связи необходимо сохранять, а какие из них – избыточны. С этого момента и вплоть до середины подросткового периода в мозге происходит что-то вроде весенней генеральной уборки. Конечно, когда вам было пять, вы могли перечислить все виды динозавров, но действительно ли вам была необходима вся эта информация? Скорее всего, нет, решил ваш мозг и стер все связи и нейроны, отвечавшие за хранение этих знаний.

Устранение лишних нейронов – это неотъемлемая часть процесса обучения, поскольку мы должны уметь не только устанавливать значимые связи между родственными понятиями, но и избавляться от ненужных. Наш мозг удаляет любые потенциальные связи между Starbucks и не имеющими к нему отношения концептами, такими как «желтый», «цветы» или «единороги». Это повышает его производительность, когда необходимо вспомнить, что такое Starbucks, и быстро воспользоваться этой информацией.

По мере того как ребенок растет, замысловатая сеть бесполезных связей между нейронами одновременно расширяется и упрощается, чтобы в ней было легче разобраться. Мозг производит огромнейшее количество нейронов с множеством разнообразных связей, а затем избавляется от тех нейронов и синапсов, которые используются меньше всего. Исследователь Гал Чечик[21] и его коллеги из Тель-Авивского университета назвали этот процесс оптимальным стиранием информации по принципу «наименьшей ценности». Таким образом, наш мозг освобождается от захламляющей информации и превращается в простой и изящный механизм, оптимизированный для конкретной среды обитания, исходя из индивидуального обучения, биологии и обстоятельств.

Итак, из-за структурной недоразвитости, а также из-за недостатка организации и языковых средств воспоминания о событиях раннего детства не могут сохраняться до взрослого возраста. Но нам еще предстоит по-настоящему разобраться, почему нам все-таки кажется, что мы помним те годы? Нетрудно понять, почему мы иногда забываем то, что происходило в действительности, но как мы можем помнить то, чего никогда не было? Почему Рут из примера, приведенного в начале этой главы, была так уверена, что помнит момент своего рождения? У нее остались яркие, детальные, мультисенсорные «воспоминания». Она описывает звуки, которые слышала, находясь в утробе матери, физическую боль, которую испытала во время родов, врачей и больничную палату, где она оказалась. Как это возможно?



17

Knickmeyer R. C., Gouttard S., Kang C., Evans D., Wilber K., Smith J. K. et al. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28 (47): 12176–12182.

18

Caviness Jr. V. S., Ke

19

Abitz M., Nielsen R. D., Jones E. G., Laursen H., Graem N. & Pakkenberg B. (2007). Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult. Cerebral Cortex, 17 (11): 2573–2578.

20

Huttenlocher P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28 (6): 517–527.

21

Chechik G., Meilijson I. & Ruppin E. (1998). Synaptic pruning in development: a computational account. Neural Computation, 10 (7): 1759–1777.