Добавить в цитаты Настройки чтения

Страница 5 из 52



Приведенное здесь описание атомов весьма и весьма упрощенное. В действительности он устроен гораздо сложнее, и очень многое в его устройстве до сих пор еще неизвестно. Однако и такая упрощенная модель довольно хорошо описывает результаты большого количества опытов, которые проводили физики, исследуя атом.

Позже нам понадобятся сведения еще о некоторых деталях атома, сейчас же дополним нарисованную модель следующим. В ядро атома входят два типа элементарных частиц: протоны и нейтроны. Последние не имеют никакого электрического заряда (отсюда и их название neutrum - ни то, ни другое латинское). Протоны же несут положительные электрические заряды, причем по величине они в точности равны заряду электрона.

Стоит сказать, сколько нейтронов, протонов и электронов содержит в себе каждый атом химических элементов.

Например, в ядре атома водорода - самого легкого элемента - содержится только один протон, вокруг которого вращается один электрон.

У углерода шесть нейтронов, шесть протонов и шесть электронов.

В атоме урана уже 143 нейтрона, 92 протона и 92 электрона.

Нельзя не обратить внимания на то, что у названных элементов число протонов равно числу электронов.

Таблица же Менделеева показывает, что это закономерно и для всех элементов. Но раз число протонов равно числу электронов, то, следовательно, положительный заряд ядра атома всегда равен отрицательному заряду всех электронов, а атом в целом, или "снаружи", электрически нейтрален.

И наконец, последний шаг путешествия в глубь атома: сколько же весят атом, протон, нейтрон? Массы этих частиц настолько малы, что для них придумана новая единица измерения, названная атомной единицей массы (а.е.м.). Одна такая единица массы равна 1,66-10^-24 грамма. Примерно столько весят и нейтрон и протон.

Вот и кончилось наше путешествие в глубь атома.

Но как все-таки извлечь из него энергию большую, чем та, которую он отдает при химических реакциях? Может быть, можно использовать метод, схожий с реакцией горения, но уже на уровне элементарных частиц, из которых состоит атом, то есть на уровне протонов и нейтронов?

При реакции горения выделение энергии происходит при соединении одних веществ и образовании других, новых. Посмотрим, что можно получить, если так же попытаться составить атом из отдельных элементарных частиц. Начнем с углерода. Какая должна быть масса у его атома, если составить его из элементарных частиц?

Проведя все вычисления, получим 12,1 а.е.м.

Вот тут-то и начинаются неожиданности! Оказывается, готовый, существующий в природе атом весит не 12,1 единицы, а только 12,0! Ну и что здесь особенного, скажете вы, стоит ли обращать внимание на такую малую разницу. Но подобное же удивление охватило нас, когда оказалось, что образовавшийся после реакции горения углекислый газ весит меньше, чем исходные продукты.

Мы выяснили тогда, что такому недостатку массы сопутствует выделение энергии. Так, может быть, и здесь то же самое? Может быть, если бы нам удалось из отдельных нейтронов, протонов и электронов составить атом углерода, то он весил бы на 0,1 атомной единицы массы меньше суммы исходных частиц? А так как материя не исчезает бесследно, то при этом пропорционально образовавшемуся недостатку массы и выделилась бы энергия?!

А умудрись мы таким образом создать 44 килограмма углерода (это вес исходных продуктов в рассмотренной выше химической реакции), то энергии получилось бы 7,8*10^12 килокалорий, что примерно в сто миллионов раз больше, чем при обычной химической реакции соединения углерода и кислорода! А это уже немало, и уже стоит обращать внимание на уменьшение массы в 0,1 а.е.м.

Все это хорошо, но у данного способа освобождения энергии есть существенный недостаток: наука еще не знает, как из отдельных элементарных частиц получать атомы углерода или других тяжелых элементов.

Ну что ж, придется искать другие способы освобождения энергии из недр атомов. Это делать уже легче, так как теперь ясно, что они должны быть основаны на использовании недостатка массы у элементов.

Недостаток массы присущ каждому элементу. Физики назвали его дефектом массы. Приведем для ясности небольшую таблицу нескольких элементов с их дефектами масс, а также их массовые числа, равные сумме протонов и нейтронов.

___________________________________________________.

_____________________________________________Дефект.





Элемент_____Число________Число____Массовое____массы.

___________нейтронов___ протонов___число____в а.е.м.

Дейтерий_____1____________1_________2_______0,0024_.

Тритий_______2____________1_________3_______0,009__.

Гелий________2____________2_________4_______0,03___.

Литий________3____________3_________6_______0,034__.

Углерод______6____________6________12_______0,1____.

Молибден____54___________42________96_______0,88___.

Лантан______82___________57_______139_______1,23___.

Уран_______143___________92_______235_______1,91___.

___________________________________________________.

Если соединить ядра таких двух элементов, чтобы у образовавшегося нового недостаток (дефект) массы был больше суммарного дефекта масс исходных элементов, то наверняка можно сказать, что при этом соединении (ядерной реакции) выделилась энергия, пропорциональная изменению дефекта массы.

Из таблицы видно, что такому условию удовлетворяет, например, реакция соединения двух ядер дейтерия с образованием гелия, при их соединении должна выделиться энергия. Такой же эффект получится, если соединить атомы дейтерия и лития и образовать два атома гелия.

Заметим, что дефект массы возрастает (а это означает больший выход энергии), если к любому элементу присоединить нейтрон. Так, с добавлением нейтрона дейтерий преобразовывается в тритий с большим дефектом массы, Значит, простое присоединение нейтрона к любому элементу сопровождается выделением энергии.

Два пути

Подобные ядерные реакции соединения легких элементов уже осуществлены. Интересно посмотреть, чего можно ожидать от реакций с тяжелыми элементами, приведенными в конце таблицы?

"Соединив" молибден с лантаном, мы получим элемент с массовым числом 235. Это уран-235 (такое написание применяется и для других элементов). Оказывается, в такой реакции результирующий дефект массы не возрастает, а уменьшается, и никакой энергии не выделяется, напротив, для осуществления такой реакции необходимо затратить ее пропорционально полученному изменению дефекта массы. Если сделать подобные расчеты для всех известных элементов, то окажется, что при соединении элементов с массовым числом, большим 60, новый элемент может быть получен лишь при затрате энергии на эту реакцию.

Вернемся к нашему примеру получения урана из молибдена и лантана. Будем рассуждать так: если при соединении атомов молибдена и лантана затрачивается энергия и получается атом урана, то при проведении реакции наоборот, то есть при делении атома урана на атомы молибдена и лантана, должна выделиться энергия. Действительно, пусть теперь исходным продуктом будет уран-235. Предположим, что каким-то путем нам удалось его разделить на молибден и лантан. Оказывается, сумма масс атомов этих элементов меньше массы атома урана, то есть дефект массы при такой реакции увеличивается, а значит, реакция пойдет с выделением энергии. Так на смену синтезу элементов пришел другой путь освобождения внутриядерной энергии - деление ядер. Так учеными был преодолен еще один рубеж на пути познания природы.

Конечно, достигли они этих высот не сразу. Ими создавались новые и отбрасывались отжившие теории, проводились многочисленные эксперименты и разрабатывались новые методы исследований. Лишь одно описание путей освобождения энергии может занять несколько томов. Перелистывая страницы этого описания, можно встретить многие славные имена наших современников, чьими трудами открыта эта тайна вещества. Среди них англичане Э. Резерфорд и Д. Чэдвик, датчанин Н. Бор, итальянец Э. Ферми, физики Советского Союза Д. Иваненко, И. Гуревич, Л. Ландау, И. Померанчук, Г. Флеров, И. Курчатов, немцы О. Ган и Ф. Штрассман, французы И. и Ф. Жолио-Кюри, а также многие, многие Другие.