Добавить в цитаты Настройки чтения

Страница 6 из 11

Наиболее характерные минидефекты, связанные с нарушением сплошности структуры композиционных материалов, – поры и минитрещины в матрице. Появление пор связано с наличием в связующие большие количества растворителя или влаги, с неправильным выбором режимов термообработки (большая скорость нагрева, низкое давление). Кроме этого, на этапе пропитки материала при мокром методе формирования его структуры, могут образоваться воздушные пузырьки, запирающие каналы между волокнами и препятствующие капиллярному движению по ним связующего. Особенно большое количество мелких пузырьков, пор и раковин возникает при ручной выкладке конструкций из ткани, пропитанной полиэфирным связующим.

Анализ композиционных материалов с различной пористостью показывает, что с ростом длины пор и их содержания степень реализации прочностных и упругих параметров армирующих волокон в композитах уменьшается. Причем, наиболее опасны вытянутые поры, длина которых превышает критическую длину элементарного волокна в композиционном материале. Особенно пористость сказывается на сопротивлении слоистых материалов сдвиговым нагрузкам и в меньшей степени – изгибающим и растягивающим [14].

Наряду с этим, поры являются концентраторами напряжений в матрице и при внешнем воздействии на конструкцию или возникновении внутренних остаточных напряжений в материале могут быть источниками образования микро и минитрещин как в самой матрице, так и вдоль границы раздела волокно – матрица.

Минидефекты и большинство микродефектов статистическим образом распределены по объему композита и охватываются нижним пределом механических свойств композиционного материала.

2.2 Дефекты типа отслоений и их влияние на несущую способность конструкций

Конструкции из композитов очень чувствительны к технологическим дефектам, например, к расслоениям, непроклеям и трещинам, а также ко вновь образовавшимся дефектам (например, к надрезам поверхностных слоев). Дефекты типа расслоений могут появляться также на стадиях транспортировки, хранения и эксплуатации.

Они могут вызываться температурными напряжениями, локальными нагрузками, например, ударами по поверхности конструкции. Для поверхностного отслоения характерно выпучивание тонкого отслоившегося участка, которое может происходить при сжатии, поверхностном нагреве или растяжении из-за эффекта Пуассона, поэтому механика поверхностных отслоений обязательно должна учитывать геометрическую нелинейность хотя бы для отслоившейся области.

Типичные примеры отслоений приведены на рисунке 2.2. Процесс отслоения требует энергетических затрат, при этом потенциальная энергия изгиба накапливается только в отслоении, а работа разрушения складывается из работы, затрачиваемой на разрушение матричной прослойки и идущей на продвижение трещины в отслоении.

Каждому типу отслоений, представленных на рисунке 2.2, соответствуют свои критерии и границы устойчивости, определяемые по Гриффитсу или Эйлеру [14].

Рост отслоений в слоистых композитах при длительно действующих или циклических нагрузках происходит устойчиво, если параметры отслоения принадлежат области устойчивости по Гриффитсу.

Однако при длительном нагружении в матрице и армирующих элементах возникают рассеянные повреждения, которые снижают сопротивление отслоений.

Для расчета роста отслоений в сжатых элементах нужно учитывать энергию изгиба, высвобождающуюся при росте выпученного отслоения. Некоторые качественные особенности роста отслоения, изображенного на рисунке 2.2, в, приведены на рисунке 2.3. Кривые 1–3 соответствуют начальным состояниям. Кривая 1 относится к случаю, когда начальный размер отслоения достаточно велик, но начальное состояние субравновесно. После окончания инкубационной стадии продолжительностью t* размер l начинает расти. Картина роста отслоения качественно сходна с той, которая наблюдается в случае растяжения.

Рисунок 2.2 – Примеры отслоений в композитах:





а – открытое отслоение при растяжении, б – эллипсоидальное при растяжении, в – сжатое в условиях цилиндрического изгиба, г – эллипсоидальное при сжатии, д – кромочное, е – кромочное с вторичной трещиной

Кривая 2 соответствует случаю, когда начальное состояние также субравновесно, поэтому существует некоторая относительно непродолжительная инкубационная стадия. После подрастания отслоения до неустойчивого состояния происходит скачок до нового субравновесного состояния. Новый размер отслоения может быть оценен, исходя из соотношения энергетического баланса. При скачкообразном подрастании отслоения мера повреждения падает практически до нуля, поскольку фронт отслоения переходит в малоповрежденную область матричной прослойки (см. рисунок 2.3, б, кривая 3). Далее следует вторая инкубационная стадия. После того как будет накоплено достаточное повреждение, фронт отслоения снова стягивается. Дальнейший рост происходит устойчиво.

Рисунок 2.3 – Диаграмма отслоений в композите при сжатии:

а – рост отслоений; б – накопление микроповреждений на фронте

Кривая 3 соответствует значениям отслоения, при которых начальная точка находится в весьма узкой полосе, заключенной между областью, где выпучивания нет, и областью, в которой отрезок устойчивого роста отслоения завершается полным отщеплением наружного слоя.

Значения критической деформации для конструкционных композитов достаточно высоки (порядка 10-3), поэтому типичное поведение сжатых отслоений описывается кривыми 1 на рисунке 2.3, а, б.

Обычно уже в ненагруженном элементе отслоение имеет начальный прогиб, полученный, например, в процессе изготовления.

Расслоения могут происходить в слоистых композиционных материалах при механической обработке конструкции или детали, определенной технологическим процессом изготовления. Механическая обработка композиционных материалов имеет ряд особенностей, отличающих их от аналогичной обработки металлов. Наличие слоистой структуры композита способствует тому, что при износе режущих инструментов происходит расслоение материала. Кроме того, при перерезании армирующих волокон, особенно при перекрестном армировании, наблюдается разлохмачивание перерезанных волокон, что приводит к ухудшению качества поверхностного слоя, способствующему возрастанию влагопоглощения и снижению несущей способности конструкции.

2.3 Структурные дефекты в пространственно-армированных композитах и их влияние на свойства материалов

Оптимальные для конкретных условий эксплуатации физико-механические и теплозащитные свойства композиционных материалов практически полностью достигаются формированием заданной пространственной структуры и зависят от степени соответствия реальной структуры расчетным параметрам, поэтому наличие структурных нарушений (дефектов) в композите может стать решающим фактором, определяющим работоспособность современных изделий.

Характерной особенностью структурных дефектов пространственно-армированных композиционных материалов является то, что наряду с дефектами, присущими традиционным материалам (трещины, раковины, поры, рыхлоты, посторонние включения и т. д.), могут образовываться дефекты, характерные только для данного вида композитов, связанные с особенностями структуры армирующего каркаса и метода формирования матрицы. Причем характер дефектов, возникающих на различных этапах изготовления материала, существенно отличается друг от друга.

На стадии изготовления каркасов возникают дефекты, связанные с отклонениями от следующих расчетных параметров структуры: направление укладки армирующих жгутов, периодичность расположения структурных элементов, расстояние между жгутами и пакетами жгутов, объемное содержание жгутов в каждом направлении армирования.