Страница 27 из 33
Принцип формообразования, по А. В. Степанову [1975, с. 67], заключается в следующем: «Форма, или элемент формы, которую желательно получить, создается первоначально в жидком состоянии за счет различных эффектов, позволяющих жидкости сохранить форму; затем сформированный объем жидкости переводится в твердое состояние в результате подбора соответствующих условий кристаллизации».
Этот принцип был применен Э. Г. Черневской, Е. А. Симун и А. И. Стожаровым [1970] к кристаллам флюорита, выращиваемым методом Шамовского—Стокбаргера—Степанова.
Исследования механизма роста кристаллов, проведенные этими авторами, показали, что вопреки общепринятому мнению кристаллизация расплава в виде моноблоков возможна и без четко выделенного затравочного центра. Рост монокристалла может начинаться от поверхности любой пространственной конфигурации — плоской, вогнутой, выпуклой и т. д. При определенных условиях и специально организованном теплоотводе переход расплава в монокристаллическое состояние может осуществляться не только в одной точке, но и на довольно большой площади изотермической поверхности любой формы и протяженности.
Э. Г. Черневской с соавторами было высказано предположение, что в области температуры кристаллизации расплава флюорита возникают условия, облегчающие образование монокристалла. Расплав приобретает псевдокристаллическую структуру, обеспечивающую образование монокристаллического слоя большой протяженности, играющего в дальнейшем роль затравки.
Установление возможности выращивания кристаллов без четко выделенного затравочного центра определило основные направления практического решения вопроса кристаллизации флюорита в производственных условиях [Черневская, Калита, 1972].
Основную формообразующую роль играет конструкция тигля [Черневская, 1971]. Вместо традиционного тигля в виде единого цилиндрического сосуда с конусным или полусферическим дном был предложен набор сосудов в виде стопы. Он обеспечивал получение одновременно целой серии кристаллов непосредственно в форме заготовок оптических деталей. В соответствии с принятым способом симметрично-кругового нагрева внешняя форма сосудов осталась цилиндрической, но теперь они имели плоские днища и свободно устанавливались друг над другом. Внутренняя плоскость каждого сосуда имеет форму и размеры кристаллизуемой заготовки или содержит гнезда для выращивания заготовок кристаллов меньших размеров и иной конфигурации.
На рис. 25 показаны различные варианты кристаллизационных тиглей, используемых при выращивании кристаллов флюорита в виде дисков. В верхней части стопы форм размещается резервуар (бункер), обеспечивающий максимальное заполнение тиглей расплавом. В дне бункера и каждого из сосудов, кроме нижнего, вытачиваются отверстия для протекания расплава. Количество сосудов определяется размерами рабочей (ростовой) зоны установки и выращиваемых заготовок кристаллов. Сосуды могут быть как одинаковой, так и различной формы. Выращивание кристаллов в таких тиглях осуществляется перемещением в ростовой печи стопы всех сосудов из зоны плавления в зону с температурой ниже температуры кристаллизации. Рост кристалла начинается в нижнем сосуде и затем продолжается в каждом из вышестоящих при последовательном пересечении ими изотермы кристаллизации.
Рис. 25. Форма тигля для выращивания кристаллов флюорита в виде дисковых заготовок
При таком «групповом» способе выращивания существенное повышение качества кристаллических заготовок было достигнуто за счет усовершенствования конфигурации форм. Отверстия для протекания расплава располагаются в центре каждого гнезда и имеют конусообразную форму. При кристаллизации расплава через отверстия прорастают монокристаллы, которые служат затравками при образовании монокристаллических заготовок в гнездах верхней формы. Вероятность спонтанного образования зародышей практически исключается.
Благодаря этому методу в настоящее время кристаллы выращиваются в виде плоскопараллельных пластин, дисков, цилиндров, призм, линз, сфер, полусфер с отклонением от заданных размеров 0,1—0,3 мм (фото 14, см. вкл.).
Из них с относительно небольшими затратами труда и минимальными отходами изготовляются соответствующие оптические детали (фото 15, см. вкл.). Получение кристаллов заданной формы значительно облегчает механизацию и автоматизацию всего технологического процесса создания флюоритовой оптики, включая и кристаллизационную и обрабатывающую стадии.
Для ряда оптических производств требуются кристаллы флюорита больших размеров. Сложная проблема получения крупногабаритных оптических кристаллов флюорита была успешно решена коллективом исследователей под руководством В. А. Соколова [1979, 1980]. Ими разработана промышленная технология выращивания кристаллических заготовок диаметром 500—600 мм, толщиной 70 мм и массой до 120 кг, из которых изготовляются крупные детали (фото 16, см. вкл.).
Выращивание крупногабаритных кристаллов проводится методом Шамовского—Стокбаргера—Степанова в специальной аппаратуре с двумя или более нагревателями и системой отражающих экранов, позволяющих создавать температурное поле строго заданной структуры и вести направленный отвод тепла.
Общая схема процесса та же, что и при выращивании обычных кристаллов заданной формы, но режим кристаллизации значительно более строгий. Условиями выращивания требуется поддержание глубокого вакуума 5∙10-5 мм рт. ст. в течение всего цикла выращивания.
Структура теплового поля должна обеспечивать отсутствие температурных градиентов в зоне расплавления шихты, но создавать большой градиент в зоне кристаллизации. Изотерма кристаллизации должна иметь плоскую форму на фронте роста кристалла. Температура части кристалла, находящейся в нижней («холодной») зоне печи, должна составлять не ниже 2/3 температуры плавления флюорита. Температурные градиенты в зоне отжига недопустимы.
Крупногабаритные кристаллы имеют высокие показатели качества, о чем свидетельствуют следующие данные по В. А. Соколову: