Страница 37 из 52
И это далеко не полный перечень странностей мира современной физики и астрофизики. Но самое поразительное, пожалуй, в том, что мир этот существует не где-то в стороне от нас, это не дом через улицу, в который мы можем однажды войти, а можем никогда и не заходить, этот мир — в нас и вокруг нас, мы в нем и живем. Живем, не сталкиваясь с очень многими его удивительными свойствами, не замечая их. Но только до поры до времени.
Если бросить толовую шашку в печь, она будет спокойно гореть и давать тепло. Но тот же тол может взорваться и разнести печь на куски. В этом случае сработают свойства, которыми тол обладает и тогда, когда просто горел, но которые проявляются только при определенных условиях…
Только что мы упоминали о том, что, согласно теории относительности, масса любого тела возрастает с увеличением скорости. Следовательно, когда мы едем в самом обычном автомобиле или летим в самолете, масса нашего тела тоже увеличивается. Но это увеличение столь ничтожно, что не только не играет никакой практической роли, но и современными средствами даже не может быть измерено. Однако этот эффект существует вполне реально, и его, как и некоторые другие эффекты, обнаруженные теорией относительности, приходится учитывать при расчете и конструировании установок ядерной и атомной физики. И поскольку наука никогда не остановится в своем познании мира, мы неизбежно будем встречаться со все более тонкими и необычными эффектами. В. И. Ленин подчеркивал что, открыв много диковинного в природе, человек откроет еще больше…
Начало нашего века ознаменовалось фейерверком выдающихся физических открытий, затронувших основные представления об окружающем мире. С тех пор наши знания о строении материи неизмеримо возросли и углубились. Был обнаружен целый ряд неизвестных ранее явлений, открыты новые закономерности, решены многие сложные проблемы. Но вместе с тем возникли новые вопросы и новые трудности. Не исключено, что они приведут к новому существенному пересмотру самых основных, фундаментальных понятий современной физики — понятий частицы, поля, пространства и времени и т. п.
Могут измениться и наши привычные представления о соотношении макроскопических и микроскопических форм существования материи. Так ли в действительности велик разрыв между микро- и макромиром?
Экспериментаторы открывают все новые и все более тяжелые частицы, так называемые резонансы, с массами, значительно превосходящими массу нуклона. Есть ли предел этих масс? И не могут ли в ультрамалых пространственно-временных областях рождаться макроскопические объекты?
Разумеется, это может произойти лишь при очень высоких энергиях взаимодействий. Такие энергии на ускорителях пока еще не достигнуты. Не могут здесь помочь и наблюдения в традиционной «лаборатории» физиков — космических лучах. Дело в том, что космические частицы, путешествующие в нашей области Вселенной, неизбежно теряют часть своей энергии в результате взаимодействия с фотонами реликтового излучения, и потому энергия этих частиц автоматически «обрезается» на некотором уровне и никогда не может его превзойти.
Во всяком случае, изучение микроявлений уже сегодня приводит к проблемам космического порядка, а решение космологических вопросов все чаще наталкивается на основные проблемы физики элементарных частиц.
Вообще же астрономия, даже в еще большей степени, чем физика элементарных частиц, является сейчас областью самых удивительных открытий, которые требуют или могут потребовать наиболее глубокого и далеко идущего пересмотра наших представлений о природе.
Современные астрономия и физика то и дело преподносят нам самые неожиданные сюрпризы, открывают «диковинные» явления, ведут нас в глубь «все более и более странного мира».
И потому иногда полезно попытаться взглянуть с необычной, парадоксальной точки зрения и на некоторые «обычные» явления.
В ряде случаев это помогает внести большую ясность в ту или иную проблему, глубже разобраться в сущности происходящих процессов.
Одна из возможностей создания подобных парадоксальных ситуаций заключается в том, чтобы поставить вопрос: «Что было бы, если бы?..» Итак, небольшая серия мысленных экспериментов: что было бы, если бы…
Перегрузка и невесомость
Любое крупное достижение науки в конечном счете как-то изменяет жизнь каждого из нас. Так было с открытием электричества и электромагнитных волн, с изобретением летательных аппаратов тяжелее воздуха, с созданием полупроводников… Сейчас в жизнь человечества входят ракеты и космические корабли.
Можно не сомневаться, что пройдет еще несколько десятков лет и люди будут пользоваться для межконтинентальных сообщений ракетным транспортом с такими же спокойствием и невозмутимостью, с какими сейчас они поднимаются на борт пассажирского реактивного лайнера. Станут обыденными и космические сообщения между Землей и Луной. Люди будут жить и работать на космических станциях, появятся профессии космических сварщиков, монтажников и др.
Но, пожалуй, впервые, благодаря научно-техническим достижениям в освоении космоса, человек попадет в принципиально новые условия, где по-иному проявляются привычные физические закономерности. Что-либо подобное может произойти разве лишь при освоении морских глубин.
Разумеется, основные законы физики и, в частности, механики одинаковы и на Земле, и под водой, и в космосе. Но проявляются они по-разному в зависимости от условий. А условия эти на Земле и в космосе далеко не одинаковы. На нашей планете они характеризуются двумя главными обстоятельствами. Во-первых, отсутствуют заметные изменения скорости — ускорения в движении точек земной поверхности. А во-вторых, наша планета притягивает к себе все предметы и заставляет их оказывать давление на свои опоры.
Отсутствие ощутимых ускорений связано с особенностями движения Земли в мировом пространстве. Вместе с нашей планетой мы участвуем в двух основных ее движениях: суточном вращении вокруг собственной оси и годовом обращении вокруг Солнца. И хотя мы мчимся вместе с Землей вокруг Солнца со скоростью 30 км/с, а вместе с Солнечной системой вокруг центра Галактики с чудовищной скоростью около 230 км/с, мы этого не ощущаем, так как организм человека совершенно нечувствителен к скорости равномерного движения.
Впрочем, согласно одному из фундаментальных положений механики, вообще никакими внутренними физическими экспериментами и измерениями невозможно обнаружить равномерное и прямолинейное движение.
Ну, а если некоторая система, например, космическая ракета, будет двигаться с ускорением под действием двигателей или испытывая сопротивление среды? При таком движении возникает перегрузка, т. е. увеличение давления на опору. Наоборот, если движение происходит с выключенными двигателями в пустоте, давление на опору исчезает, наступает состояние невесомости.
В условиях Земли давление на опору связано с действием силы тяготения. Но некоторые думают, что сила давления на опору — это и есть та сила, с которой тело притягивается Землей. Если бы дело обстояло так, то, например, в космическом корабле, движущемся к Луне, невесомости не было бы, так как в любой точке орбиты на корабль действовала бы сила земного притяжения. Да и вообще в космосе вряд ли возможно найти такое место, где равнодействующая сил тяготения была бы равна нулю.
Заметим, что давление на опору может быть вызвано не только действием силы тяготения, но и другими причинами, например, ускорением. Для неподвижного тела, покоящегося на земной поверхности, сила притяжения в самом деле совпадает с силой давления на опору. Но это только частный случай. На Земле человек с некоторой силой давит на ее поверхность. В свою очередь, согласно третьему закону механики, и поверхность Земли давит на человека снизу вверх с точно такой же силой. Эта сила «противодействия» называется реакцией опоры. Силы действия и противодействия всегда приложены к разным телам. В частности, в рассматриваемом случае сила давления на опору приложена к опоре, а реакция опоры к самому телу.