Страница 7 из 9
Модель земной гравитации
В те же десятилетия, когда зарождалась квантовая механика, Альберт Эйнштейн разработал Общую теорию относительности, которая представляет собой теорию гравитации. Согласно ей, сила тяготения возникает в результате изгиба пространства и времени (которые вместе образуют пространство – время) под действием материи.
По отдельности квантовая механика и Общая теория относительности Эйнштейна экспериментально подтверждены. Однако еще ни разу не исследовался случай, когда можно было бы проверить обе теории одновременно. Дело в том, что квантовые эффекты заметны лишь в малых масштабах, а для того, чтобы стали заметны эффекты Общей теории относительности, требуются большие массы. Объединить оба условия можно лишь при каких-то экстраординарных обстоятельствах.
Помимо отсутствия экспериментальных данных существует огромная концептуальная проблема: Общая теория относительности Эйнштейна полностью классическая, т. е. неквантовая. Для обеспечения логической целостности физики нужна квантовая теория гравитации, объединяющая квантовую механику с Общей теорией относительности в квантовую теорию пространства-времени.
Физики разработали множество математических процедур для превращения классической теории в квантовую. Многие ученые тщетно пытались применить их к Общей теории относительности.
Кстати, термин «петлевая» был введен из-за того, что в некоторых вычислениях использовались маленькие петли, выделенные в пространстве-времени.
Согласно теории петлевой квантовой гравитации, пространство подобно атомам: числа, получаемые при измерении объема, образуют дискретный набор, т. е. объем изменяется порциями. Другая величина, которую можно измерить, – площадь границы, которая тоже оказывается дискретной. Иными словами, пространство не непрерывно и состоит из определенных квантовых единиц площади и объема.
Возможные значения объема и площади измеряются в единицах, производных от длины Планка, которая связана с силой гравитации, величиной квантов и скоростью света. Длина Планка очень мала: 10–33 см; она определяет масштаб, при котором геометрию пространства уже нельзя считать непрерывной. Самая маленькая возможная площадь, отличная от нуля, примерно равна квадрату длины Планка, или 10–66 см2. Наименьший возможный объем, отличный от нуля, – куб длины Планка, или 10–99 см3. Таким образом, согласно теории, в каждом кубическом сантиметре пространства содержится приблизительно 1099 атомов объема. Квант объема настолько мал, что в кубическом сантиметре таких квантов больше, чем кубических сантиметров в видимой Вселенной (1085).
На что же похожи кванты объема и площади? Быть может, пространство состоит из огромного количества крошечных кубов или сфер? Все оказывается далеко не просто.
Вот как описывает проблему визуализации известный квантовый теоретик Ли Смолин. Вообразите область пространства, по форме напоминающую куб. На диаграмме мы изображаем ее как точку, представляющую объем, с шестью выходящими из нее линиями, каждая из которых изображает одну из граней куба. Число рядом с точкой указывает величину объема, а числа рядом с линиями – величину площади соответствующих граней.
Поместим на вершину куба пирамиду. У наших многогранников есть общая грань, и их следует изобразить как две точки (два объема), соединенные одной из линий (грань, которая соединяет объемы). У куба осталось пять свободных граней (пять линий), а у пирамиды – четыре (четыре линии). Аналогично можно изобразить любые комбинации различных многогранников: объемные полиэдры становятся точками, или узлами, а плоские грани – линиями, соединяющими узлы. Математики называют такие диаграммы графами.
Квантовые состояния объема и площади
В нашей теории отбрасываем рисунки многогранников и оставляем только графы. Математика, описывающая квантовые состояния объема и площади, обеспечивает нас набором правил, указывающих, как линии могут соединять узлы и какие числа могут располагаться в различных местах диаграммы. Каждое квантовое состояние соответствует одному из графов, и каждому графу, удовлетворяющему правилам, соответствует квантовое состояние. Графы представляют собой удобную краткую запись возможных квантовых состояний пространства.
Диаграммы гораздо больше подходят для представления квантовых состояний, чем многогранники. В частности, некоторые графы соединяются такими странными способами, что их невозможно аккуратно преобразовать в картину из полиэдров. Например, в тех случаях, когда пространство изогнуто, невозможно изобразить многогранники, стыкующиеся должным образом, зато совсем нетрудно нарисовать граф и по нему вычислить, насколько искажено пространство. Поскольку именно искажение пространства создает гравитацию, диаграммы играют огромную роль в квантовой теории тяготения.
Для простоты мы часто рисуем графы в двух измерениях, но лучше представлять их заполняющими трехмерное пространство, потому что именно его они иллюстрируют. Но здесь есть концептуальная ловушка: линии и узлы графа не занимают конкретные положения в пространстве. Каждый граф определяется только тем, как его части соединяются между собой и как они соотносятся с четко заданными границами (например, с границей области B). Однако нет никакого непрерывного трехмерного пространства, в котором, как может показаться, размещаются графы. Линии и узлы – это и есть пространство, геометрия которого определяется тем, как они соединяются.
Описанные графы называются спиновыми сетями, потому что указанные на них числа связаны со спином. Спиновые сети олицетворяют фиксированные квантовые состояния объемов и площадей пространства.
Экспериментальная проверка
Когда в миллиардах световых лет от нас происходит гамма-всплеск, мгновенный взрыв порождает гигантское количество гамма-лучей. В соответствии с теорией петлевой квантовой гравитации фотон, движущийся по спиновой сети, в каждый момент времени занимает несколько линий, т. е. некоторое пространство. Дискретная природа пространства заставляет гамма-лучи более высокой энергии перемещаться немного быстрее. Разница ничтожна, но в ходе космического путешествия эффект накапливается миллиардами лет. Если возникшие при всплеске гамма-лучи разных энергий прибывают на Землю в разные моменты времени, то это свидетельствует в пользу теории петлевой квантовой гравитации.
Отдельные узлы и ребра диаграмм представляют собой чрезвычайно малые области пространства: типичный узел соответствует объему около одной длины Планка в кубе, а линия – площади порядка одной длины Планка в квадрате. Но, в принципе, спиновая сеть может быть неограниченно большой и сколь угодно сложной. Если бы мы могли изобразить детальную картину квантового состояния нашей Вселенной (т. е. геометрию ее пространства, искривленного и перекрученного тяготением галактик, черных дыр и пр.), то получилась бы гигантская спиновая сеть невообразимой сложности, содержащая приблизительно 10184 узлов.
Итак, спиновые сети описывают геометрию пространства. Но что можно сказать о материи и энергии, находящихся в нем? Частицы, такие как электроны, соответствуют определенным узлам, снабженным дополнительными метками. Поля, такие как электромагнитное, обозначаются аналогичными маркерами на линиях графа. Движение частиц и полей в пространстве представляет собой дискретное (скачкообразное) перемещение меток по графу.
В теории относительности пространство и время неотделимы и представляют собой единство. При введении концепции пространства – времени в теорию петлевой квантовой гравитации спиновые сети, представляющие пространство, превращаются в так называемую спиновую пену. С добавлением еще одного измерения – времени – линии спиновой сети расширяются и становятся двумерными поверхностями, а узлы растягиваются в линии. Переходы, при которых происходит изменение спиновой сети (шаги, описанные выше), теперь представлены узлами, в которых сходятся линии пены.