Добавить в цитаты Настройки чтения

Страница 18 из 78

Вклад Гильберта в общую теорию относительности — лагранжиан Эйнштейна — Гильберта (приводящий к действию Эйнштейна — Гильберта) — тоже является довольно простым. Тем не менее он достаточно богат на математические следствия и порождает уравнения поля в общей теории относительности. Кроме того, если у вас есть потребность модифицировать общую теорию относительности физически значимым способом, лагранжиан обеспечивает необходимые для этого средства. Мы увидим, что Шрёдингер в своих попытках расширения общей теории относительности для учета других сил в конечном итоге сделает именно это (модифицирует лагранжиан).

Гамильтон разработал другой способ описания механических систем: так называемый гамильтонов подход. Вместо вычитания потенциальной энергии из кинетической обе величины складываются. Эта сумма называется гамильтонианом и может быть использована для получения системы уравнений, описывающей взаимосвязь координат и импульса системы. Как и метод Лагранжа, гамильтонов подход также сыграл важную роль в современной физике, в том числе, как мы увидим, в формулировке квантовой механики Шрёдингера. Гамильтонов набор математических инструментов также может быть применен к общей теории относительности, как показал Эйнштейн, когда наконец сформулировал ее окончательную версию.

Великолепное творение

Эйнштейн предал гласности свой шедевр в практически окончательной форме на собрании Прусской академии наук 4 ноября 1915 года. Он был горд представить уравнения поля для полной теории гравитации, основанной на геометрии пространства-времени. 18 ноября он выступил перед той же аудиторией с другим докладом, в котором предложил свое решение вековой проблемы прецессии орбиты Меркурия. Два месяца спустя, когда расчеты были окончательно проверены, он писал своему другу Паулю Эренфесту: «Можете ли Вы представить себе мою радость от подтверждения идеи общей ковариантности, которая дала в результате правильные уравнения для движения перигелия Меркурия? От волнения я на несколько дней потерял дар речи»{31}.

К тому времени, как Эйнштейн опубликовал окончательный вариант своей теории в престижном журнале A

Золотой храм Эйнштейна построен на твердом фундаменте: содержащейся во Вселенной материи и энергии. Начните с любого распределения материи и энергии, описываемого тензором энергии-импульса Тμν, и полевые уравнения общей теории относительности позволят вам определить компоненты другого математического объекта — тензора Эйнштейна Gμν, описывающего геометрию пространства-времени. Уравнение Gμν = 8πTμν (которое может быть записано в различных формах) считается одним из наиболее важных вкладов Эйнштейна наряду с его формулой Е = тс2 и уравнением фотоэффекта. Все три гениальных уравнения высечены на мемориале Эйнштейна в Вашингтоне.

Случай, как-то рассказанный известным физиком Ричардом Фейнманом, иллюстрирует вездесущность уравнений Эйнштейна в современных дискуссиях о теории гравитации. В 1957 году Фейнмана пригласили на первую Американскую конференцию по общей теории относительности в Чапел-Хилл в штате Северная Каролина. Когда он прибыл в аэропорт и собирался взять такси, оказалось, что он не знает, проводится конференция в Университете Северной Каролины или в Университете штата Северная Каролина. Поэтому он спросил таксиста, не заметил ли он каких-нибудь людей, выглядящих отрешенными и повторяющих: «Джи-мю-ню, джи-мю-ню»{32}.



Суть уравнений Эйнштейна заключается в том, что геометрия в некоторой области пространства, выраженная тензором Эйнштейна, определяется находящейся там материей и энергией посредством тензора энергии-импульса. Другими словами, масса и энергия деформируют пространство-время, указывая ему, где и как искривляться. Геометрия пространства-времени, в свою очередь, определяет то, как движутся в нем тела. То есть уравнения Эйнштейна изящно объединили содержимое Вселенной с ее формой.

Любой тензор можно записать в терминах его компонент в виде матрицы, или таблицы. Тензор Эйнштейна и тензор энергии-импульса могут быть записаны как матрицы 4x4. У этих матриц по шестнадцать компонент, но не все они являются независимыми. Существует правило симметрии, требующее, чтобы элемент из определенной строки и столбца (например, из третьей строки и четвертого столбца) совпадал с элементом, у которого номера строки и столбца переставлены местами (в нашем примере — из четвертой строки и третьего столбца). Это похоже на зеркальную расстановку шахматных фигур относительно диагонали шахматной доски. Мы называем такие тензоры симметричными.

С учетом условия симметричности тензор Эйнштейна содержит десять независимых компонент. Так же, как и тензор энергии-импульса. Таким образом, уравнения Эйнштейна, которые связывают два тензора, дают десять независимых соотношений между компонентами. Они показывают, как материя и энергия влияют на различные характеристики пространства и времени. Некоторые из этих соотношений приводят к растяжению или сжатию. Другие — описывают скручивание или поворот. Все, что может случиться с пространством и временем из-за гравитационного воздействия вещества и энергии, содержится в этих уравнениях.

Но если уравнения Эйнштейна так просты и изящны, то почему потребовалось столько времени, чтобы их вывести? Как говорится, дьявол кроется в деталях. Вы не можете просто взять тензор Эйнштейна и непосредственно определить движения астрономических объектов, таких как планеты или звезды. То, как объекты движутся, определяется еще одним математическим объектом, который называется метрическим тензором. Переход от тензора Эйнштейна к метрическому тензору вовсе не очевиден и требует нескольких шагов.

Предположим, вам известно распределение массы и энергии в некоторой области пространства, и вы хотите определить, как в ней будут двигаться тела. Вот алгоритм расчета. Сначала используйте уравнения Эйнштейна, чтобы получить тензор Эйнштейна из тензора энергии-импульса. И тензор Эйнштейна, и связанный с ним тензор кривизны Римана (первый является своего рода сокращенной записью последнего) кодируют информацию о кривизне пространства-времени от точки к точке. Затем используйте компоненты либо тензора Эйнштейна, либо тензора Римана, чтобы построить геометрический объект, называемый аффинной связностью (или связностью Кристоффеля). Связность определяет то, как компоненты векторов (объектов, обладающих длиной и направлением) преобразуются, если вы перемещаете их параллельно самим себе от точки к точке. Далее, используйте аффинные связности, чтобы вычислить компоненты метрического тензора. Метрический тензор сшивает ткань пространства-времени, указывая, каким образом измерять расстояния между точками. Он предлагает модификацию теоремы Пифагора для искривленного пространства-времени. Наконец, используйте метрику для определения наиболее коротких путей, по которым в пространстве могут двигаться объекты. Из-за деформации пространства-времени они, как правило, будут изогнутыми, как, например, эллиптические орбиты планет вокруг Солнца.