Добавить в цитаты Настройки чтения

Страница 7 из 28



Кроме управления лабораторией ученый занимался исследованием электрических разрядов газов. Выбор данной темы — пример того, как первые шаги в науке влияют на последующую карьеру ученых. Еще в Манчестере Томсон заинтересовался составом материи и структурой эфира.

Что такое эфир? Или, точнее, чем был эфир? В Англии XIX века физики восстановили это старое представление: мир «заполнен», иначе как передавались бы силы, особенно электрические? Вопрос нетривиален, хотя существование эфира так же являлось неочевидным. Эфир должен был быть достаточно тугим, чтобы передавать электромагнитные силы, но в то же время достаточно гибким, чтобы не оказывать сопротивления движению твердых тел. В то же время он должен был быть очень легким, поскольку не удалось измерить его массу. Противоречиво ли это понятие? Сегодня физики полагают, что так, но еще в XIX веке казалось абсурдом рассуждать о силах между удаленными телами, не имеющими посредника. Эфир не только позволял объяснить электрические силы: считалось, что с учетом его особенных характеристик, возможно, он объяснит связь с миром духов, телепатию и так далее. Следует помнить, что во второй половине XIX века буржуазия Англии и США была увлечена оккультными силами. Благодаря трансатлантическому кабелю стала возможной телеграфная связь между двумя странами, и этот контекст способствовал расцвету спиритизма. Считалось, что наука может и должна объяснить все, включая телепатические и спиритические явления. Так, в 1882 году группа преподавателей и студентов Кембриджа и ряда университетов основала в Лондоне Общество психических исследований, существующее до сих пор. Среди физиков того времени, участников этой организации, были лорд Рэлей, бывший директор Кавендишской лаборатории, и Уильям Крукс, который наряду с Дж. Дж. Томсоном являлся крупным специалистом в изучении электрических разрядов газов. Сам Томсон заинтересовался этой темой и участвовал в научных сеансах спиритизма и телепатии, «научных» в том смысле, что зал, где проводились такие сеансы, был полон приборов, измеряющих электричество и магнетизм, которые должны были зафиксировать потоки энергии.

"Сеанс гипноза", полотно кисти Ричарда Борга, 1887 год (Национальный музей в Стокгольме).

В Кембридже он стал специалистом по новым теориям об электричестве и магнетизме, которые Максвелл развил в своем «Трактате» Максвелл объединил два явления, до тех пор считавшиеся различными, — электрические и магнитные силы. Он также предположил, что электрические разряды в газах могут быть хорошей отправной точкой для понимания сил электромагнитных и сил, обеспечивающих целостность атомов. Они могли способствовать постижению связи между атомами и эфиром и, следовательно, лучшему пониманию обеих материй. Максвелл не успел развить свою идею, в возрасте 48 лет он скоропостижно скончался. В течение последних пяти лет он возглавлял Кавендишскую лабораторию, и Томсон, его преемник, оказался морально обязанным завершить эту работу.

Разряды в газах обычно наблюдаются во флуоресцентных трубках: стеклянная колба заполняется определенным газом при низком давлении, разница электрических потенциалов в газе дает внезапное лучеиспускание, которое исчезает при отсутствии разницы потенциалов. Хотя сегодня мы привыкли к свечению флуоресцентных ламп, и оно даже раздражает нас своим мерцанием, более 100 лет назад это явление обладало ореолом таинственности. В зависимости от типа используемого газа (и при изменении давления газа, электрического потенциала или формы стеклянной трубки) цвет разряда может варьироваться. В темноте это свечение захватывало воображение и ученых и публики — не только из-за красоты, но и из-за спиритической притягательности.

Любой школьник знаком с законом Ньютона о всемирном тяготении и законом Кулона об электрической силе, и вот между ними была проведена аналогия. Точно так же, как существует концепция массы, от которой зависит сила тяготения, существует и другая концепция — электрические заряды, положительные или отрицательные, которые взаимно притягиваются или отталкиваются. Однако разговор об электрических зарядах требует абстрагирования, поскольку на самом деле существуют не сами заряды, а электрически заряженные тела. Это важно для понимания формулировки Томсона и других английских физиков XIX века.



Модель, с помощью которой Томсон визуализировал электрический разряд, подобна модели, используемой при электролизе. Ученый представлял себе, что с электрическим разрядом происходит диссоциация молекул газа и последующая их реассоциация. Как в популярных танцах с постоянной сменой партнеров, энергия, рассеянная в электрическом разряде, вызвана этим постоянным обменом атомов между молекулами. В 1883 году Томсон разработал теорию материи, согласно которой атомы — всего лишь вихри эфира, то есть зоны, где эфир движется, образуя спирали. Так, ассоциация и диссоциация атомов — это различные динамические сочетания этих вихрей, и электрические явления вызваны натяжениями, которые такие движения производят в эфире.

Это видение мира, в котором атомы и электрический заряд предстали как проявления одной базовой сущности — эфира, — позволяло рассматривать химию и электромагнетизм комплексно. Однако теория не имела успеха, и Томсону пришлось заменить ее другой, более простой, но менее универсальной, в которой электрический заряд — это свойство атомов молекул в их взаимоотношении с эфиром. Таким был первый шаг к «атомизации» электрического заряда, столь важный для последующих работ ученого.

Когда Томсон понял, как сложно установить теорию, которая объяснила бы взаимодействие между электричеством, материей и эфиром, он сосредоточился на изучении катодных лучей. Катодные лучи — это свет, который появляется, если задать разницу потенциалов в вакуумных трубках. Отсутствие материи позволяло предположить, что понять механизмы электрической проводимости эфира станет легче. Было известно, что катодные лучи отклоняются по магнитным полям, но с электрическими полями того же не наблюдалось. Отсюда противоречие между корпускулярными и волновыми объяснениями. Первые заключались в том, что катодные лучи — это результат прохождения электрически заряженных молекул между анодом и катодом (полюсами трубки). Такое объяснение противоречило предположению, что в электрических полях нет отклонения. Поэтому некоторые исследователи утверждали, что катодные лучи — это волна, передаваемая в эфире и не сопровождаемая материей.

Томсон заметил, что катодные лучи все-таки отклоняются из-за электрического поля, что делало более вероятной их идентификацию как электрически заряженных молекул. Британскому ученому, работавшему над моделью электролиза, показалось логичным, что катодные лучи — это результат испускания заряженных молекул анодом и катодом. Однако, к собственному удивлению, в 1897 году он установил: частное между зарядом и массой этих молекул таково, что масса должна быть в тысячу раз меньше массы самого маленького известного атома, атома водорода. Кроме того, новая молекула не зависела от типа материала, из которого сделаны катоды, в связи с чем Томсон пришел к выводу: маленькая молекула, ответственная за катодные лучи, является компонентом всех атомов. Эту частицу он назвал «корпускулой».

Сегодня корпускулы мы называем электронами и рассматриваем их как одни из элементарных частиц материи. Однако в конце XIX века предположение, что атомы состоят из равных между собой корпускул, плохо восприняли как химики, так и физики. Томсона упрекнули в приверженности алхимии и в том, что он воскрешает старую мечту о трансмутации элементов. Атомы Дальтона различались между собой, они были неизменны и неделимы, что гарантировало некую стабильность Вселенной. Если атомы состоят из субатомных частиц, то единственное различие между атомами — это число и организация таких частиц, что приближает к возможности замены одних атомов другими, например к превращению ртути в золото, как того хотели средневековые алхимики. Как раз поэтому физики и химики не сразу приняли корпускулу.