Добавить в цитаты Настройки чтения

Страница 5 из 11



И наконец, во время учебы в аспирантуре Калифорнийского университета в Беркли я совершенно случайно узнал, что существует и другое, хоть и спорное объяснение, каким образом свет может перемещаться в вакууме. Эта альтернативная теория выглядела настолько бредовой, что знакомство с ней стало для меня потрясением. Подобный шок испытали многие американцы, впервые услышав, что президента Джона Кеннеди застрелили. При этом все они запомнили, в какой именно момент услышали шокирующее известие, что при этом делали, с кем говорили. Мы, физики, тоже испытываем серьезный шок, когда впервые сталкиваемся с теорией Калуцы – Клейна. Поскольку эту теорию долгое время считали спекуляцией и домыслом, в учебные программы она никогда не входила, молодым физикам представлялась возможность открыть ее для себя случайно в процессе чтения внеучебных материалов.

Эта альтернативная теория дала свету простейшее объяснение: на самом деле свет – вибрация пятого измерения, или, как его называли мистики, – четвертого. Если свет и способен распространяться в вакууме, то лишь благодаря вибрации самого вакуума, так как в действительности «вакуум» существует в четырех пространственных измерениях и одном временном. Добавляя пятое измерение, силу тяжести и свет можно объединить на удивление простым способом. Вспоминая о впечатлениях, полученных в детстве в чайном саду, я вдруг понял, что это и есть математическая теория, которую я искал.

Исходная теория Калуцы – Клейна в силу технических трудностей более полувека оставалась бесполезной. Однако в последние десять лет ситуация изменилась. Более совершенные варианты теории, такие как теория супергравитации и особенно теория суперструн, наконец устранили ее неувязки. Чуть ли не в одночасье теорию многомерности начали отстаивать и продвигать в исследовательских лабораториях всей планеты. Многие ведущие физики мира признали, что могут существовать и другие измерения, помимо обычных четырех пространственных и одного временного. Эта идея была в центре внимания интенсивных научных исследований. Многие физики-теоретики в настоящее время придерживаются мнения, что исследования многомерности могут стать решающим шагом к созданию всеобъемлющей теории, объединяющей законы природы, – теории гиперпространства.

Если это предположение окажется справедливым, будущие историки науки, скорее всего, смогут утверждать, что одной из великих концептуальных революций XX в. стало понимание, что гиперпространство может оказаться ключом, открывающим самые сокровенные тайны природы и всего сущего.

Из искры этой основополагающей концепции родилось пламя множества научных исследований: несколько тысяч статей, написанных физиками-теоретиками из крупнейших лабораторий мира, были посвящены изучению свойств гиперпространства. Страницы двух ведущих научных журналов – Nuclear Physics и Physics Letters – заполнились статьями с анализом самой теории. Было проведено более 200 международных физических конференций с целью выявления значения многомерности.

К сожалению, мы все еще далеки от экспериментального подтверждения идеи, что наша Вселенная многомерна. (О том, что именно потребовалось бы для обоснования теории и, возможно, управления мощью гиперпространства, мы поговорим далее в этой книге.) Так или иначе, в настоящее время эта теория решительно утвердилась на позициях законной отрасли современной теоретической физики. К примеру, Институт перспективных исследований в Принстоне, где Эйнштейн провел последние десятилетия своей жизни (и где была написана данная книга), в настоящее время является одним из центров активных исследований многомерного пространства-времени.

Стивен Вайнберг, удостоенный Нобелевской премии по физике в 1979 г., подытожил эту концептуальную революцию, сравнительно недавно заметив, что теоретическая физика приобретает все большее сходство с научной фантастикой.

Почему мы не видим высшие измерения?

Поначалу все эти революционные идеи кажутся нам странными, поскольку трехмерность окружающего нас повседневного мира мы принимаем как данность. Как отмечал ныне покойный физик Хайнц Пейджелс, «одна из характеристик нашего физического мира настолько очевидна, что никогда не ставит в тупик большинство людей, – это факт трехмерности пространства»{2}. Почти интуитивно мы понимаем, что любой предмет можно описать с помощью его длины, ширины и высоты. Указав три числа, можно определить положение любой точки в пространстве. Когда мы хотим увидеться с кем-нибудь за обедом в Нью-Йорке, то говорим: «Встречаемся на 24-м этаже здания на углу 42-й улицы и Первой авеню». Два числа указывают конкретное пересечение улиц, третье – высоту над землей.



Пилоты самолетов тоже определяют свое точное местонахождение с помощью трех чисел – высоты и двух координат на сетке или карте. В сущности, указания трех чисел достаточно, чтобы найти любую точку на планете – от кончика нашего носа до пределов обозримого мира. Это понимают даже дети: эксперименты с младенцами показали, что, приблизившись к краю обрыва и заглянув туда, они ползут обратно. Малыши инстинктивно понимают смысл не только понятий «лево», «право», «вперед» и «назад», но и «вверх» и «вниз». Следовательно, интуитивное представление о трех измерениях прочно запечатлено в нашем мозгу с раннего детства.

Эйнштейн развил эту концепцию и включил в нее время как четвертое измерение. К примеру, чтобы увидеться с кем-нибудь за обедом, мы должны также указать время: допустим, сказать, что встречаемся в половину первого на Манхэттене; иначе говоря, чтобы определить конкретное событие, нам требуется его четвертое измерение – время, в которое это событие происходит.

Современных ученых привлекает возможность выйти за рамки концепции четвертого измерения по Эйнштейну. Предмет нынешнего научного интереса – пятое измерение (пространственное, находящееся за пределами временного и трех общеизвестных пространственных) и далее. (Во избежание путаницы повсюду в этой книге я в соответствии с принятой практикой называю четвертое измерение пространственным измерением, помимо длины, высоты и ширины. Физики обычно считают это измерение пятым, но я намерен придерживаться исторической последовательности. Четвертым временным измерением мы будем называть время.)

Каким мы видим четвертое пространственное измерение?

Проблема в том, что никаким. Пространства высших измерений невозможно вообразить, напрасными оказываются любые попытки. Выдающийся немецкий физик Герман фон Гельмгольц сравнивал неспособность «увидеть» четвертое измерение с неспособностью слепого понять, что такое цвет. Как бы красноречиво мы ни объясняли слепому, что такое «красный», слова не в состоянии передать все богатство смысловых оттенков такого понятия, как цвет. Даже опытные математики и физики-теоретики, годами работающие с многомерностью, признаются, что не могут визуализировать высшие измерения. Вместо этого они углубляются в мир математических формул. Но если математики, физики и компьютеры без проблем решают уравнения для многомерного пространства, люди в массе своей не могут представить себе иные вселенные, помимо нашей собственной.

В лучшем случае мы можем пользоваться разнообразными математическими фокусами, изобретенными математиком и мистиком Чарльзом Хинтоном на рубеже XX в., чтобы представлять себе тени или проекции многомерных объектов. Другие математики, подобно Томасу Банчоффу, главе кафедры математики Университета Брауна, написали компьютерные программы, позволяющие манипулировать многомерными объектами, отбрасывающими тени на плоскую, двумерную поверхность компьютерных экранов. Греческий философ Платон сравнивал с людей с пещерными жителями, обреченными видеть только размытые серые тени того богатства жизни, которое находится за пределами наших пещер, – так и компьютеры Банчоффа позволяют лишь мельком взглянуть на тени многомерных объектов. (В действительности мы не в состоянии вообразить высшие измерения из-за трагического стечения обстоятельств в процессе эволюции. Наш мозг эволюционировал таким образом, чтобы справляться с множеством экстренных ситуаций в трех измерениях. Мгновенно, даже не задумываясь, мы распознаем прыжок льва или нападение слона и реагируем на них. По сути дела, те люди, которые лучше представляли себе, как движутся, поворачиваются, изгибаются объекты в трех измерениях, имели несомненное преимущество и выживали чаще, чем те, кто не мог себе этого представить. К сожалению, не существовало давления естественного отбора, которое побуждало бы людей учиться воспринимать движение в четырех пространственных измерениях. Умение видеть четвертое пространственное измерение определенно не помогло бы никому отразить нападение саблезубого тигра. Львы и тигры не бросаются на нас через четвертое измерение.)

2

Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Begi