Страница 56 из 60
Значительное место как кормовой объект в нашей стране и за рубежом, особенно в Японии, занимает микроскопическая водоросль хлорелла. Большое внимание начинает привлекать синезеленая водоросль спирулина, содержащая до 45—55% белка. В Республике Чад ее давно употребляют в пищу. В Мексике сконструированы специальные бассейны для культивирования спирулины. Мексиканские исследователи считают, что производство сухой биомассы этой водоросли будет экономически рентабельно. Серьезно обсуждается вопрос о получении из бытовых отходов или из водорослей с помощью метановых бактерий горючего газа — метана. Подсчитано, что если бы США начали выращивать водоросли на 5% всех земель, то из их продукции с помощью метановой ферментации можно было бы получить столько метана, сколько понадобится для удовлетворения всей потребности страны в энергии к 2020 году.
Генетико-селекционными методами удается весьма существенно повысить продукцию микроорганизмами специфических полезных веществ. Так, продукция пенициллина плесенью пенициллиум была увеличена по сравнению с исходной в тысячу раз.
Стоит задача создания путем селекции микроорганизмов, способных эффективно разлагать искусственные полимеры, токсичные вещества, пестициды, избирательно истреблять вредных насекомых и т. д.
Широкий фронт исследований различных видов микроскопических организмов в качестве продуцентов пищевого и кормового белка, ферментов, аминокислот, лекарственных препаратов и т. п. обеспечит должный прогресс в этой важной области.
Для сохранения урожая следует вести борьбу с вредителями. И в этом деле существуют разные пути. Весьма эффективны различные хлорорганические соединения типа ДДТ, гексахлорана и др., так называемые пестициды. Они сыграли свою, несомненно, положительную роль. И, однако, сейчас уже ясно, что неограниченное применение подобных веществ — дело не только бесперспективное, но и вредное.
В последние годы началась разработка новых, менее опасных и более эффективных способов защиты лесных насаждений и сельскохозяйственных культур. Это — внедрение иммунных сортов, стимуляция развития и размножения хищников, поедающих вредителей; культивирование растений, отпугивающих вредителей; выведение штаммов микроорганизмов, поражающих вредных членистоногих; привлечение или отпугивание вредителей специфическими препаратами (аттрактанты, репелленты), ультразвуком, другими физическими методами воздействия; разрушение генетической структуры вредителей, наконец, синтез легко разрушаемых микроорганизмами пестицидов. Все это требует знания образа жизни вредителей, особенностей их поведения и т. п. Иначе говоря, в сложном деле защиты урожая от вредных организмов ведущую роль должен играть не химик, а биолог, а в будущем — ноогеник. Лишь ноогенические методы борьбы (используя наряду с другими, конечно, и химические средства!) позволят не разрушать естественные комплексы организмов, а преобразовывать их в желательном направлении, делая биоценозы более многообразными, органически включающими и человеческую практику. Это один из важных разделов ноогеники.
Необходимость охраны лесов, парков, лугов, существующих пахотных земель заставляет задуматься над проблемой их отчуждения под городское строительство. Город будущего, по-видимому, будет расти вверх и вглубь, а не вширь. Эти тенденции уже обнаруживаются. Автоматизированные промышленные предприятия уйдут под землю. На поверхности останутся лишь пульты управления. Некоторые исследователи допускают возможность вынесения за пределы биосферы, на орбитальные околоземные космические станции, особо вредных производств, засоряющих биосферу токсическими и радиоактивными отходами. Это серьезное предложение. Однако прежде чем его осуществлять, требуется исследовать влияние околоземного космического пространства на биосферу Земли, проблему обмена веществом и энергией между биосферой и околоземным космосом.
Сложен вопрос с чистой пресной водой. Ее ресурсов для развития общества скоро явно не хватит. Большинство ученых, думающих над решением данной проблемы, приходит к выводу: в ближайшем будущем человечество будет вынуждено для производственных целей и пищевого водоснабжения в широких масштабах пользоваться опресненной морской водой. В принципе эта проблема уже решена. В настоящее время в мире функционирует более 800 опреснителей с суточной производительностью 1,7 млн. м3 пресной воды (см. М. В. Санин, 1975). В нашей стране мощный опреснитель работает на полуострове Мангышлак, обеспечивая пресной водой г. Шевченко.
По расчетам В. А. Клячко (1972), объем опресненной воды во всем мире должен возрасти к 1990 г. до 20 км3, а к 2000 г. до сотен кубических километров. Себестоимость опресненной воды пока еще дороже, чем воды из естественных источников. Но в отдельных случаях ее дешевле получить на месте, чем перебрасывать или привозить из других районов. Глобальное решение проблемы опреснения соленых и солоноватых вод освободит реки и озера от непосильной нагрузки, которую они несут сейчас; появится возможность полного освоения пустынь, обеспечения химической промышленности новым сырьем. Крупные производства, потребляющие большое количество воды, шагнут к берегам морей и океанов.
Ясно, что прежде чем подобные пока еще полуфантастические проекты будут в той или иной мере осуществлены, необходимо проведение большой научно-исследовательской, опять-таки, по существу, ноогенической работы, которая только и может обеспечить их практическую реализацию. В противном случае мы лишь усилим загрязнение морей и океанов со всеми вытекающими отсюда последствиями.
Весьма важным является переход промышленности к технологии без загрязнения биосферы, создание беструбных, бессточных заводов. По мнению академика И. В. Петрянова, «в огромном большинстве случаев это совершенно реальный и выгодный путь». С позиции ноогеники — это единственно возможный путь.
Пока беструбное и бессточное производство полностью не налажено, недостаточно очищенные стоки заводов и фабрик, прежде чем поступать в открытую природу, должны непременно проходить биологическую доочистку с помощью микроорганизмов, разрушающих органические отходы промышленности. Некоторые микроорганизмы (бактерии, грибки, актиномицеты) способны использовать стойкие органические вещества и даже антисептики (например, фенолы) в качестве источников углерода и энергии. Эта способность низших организмов может быть значительно усилена методами генетики и селекции. В этом направлении также ведется научный поиск.
Отдельные виды организмов могут и должны быть использованы в качестве концентраторов металлов и, что особенно важно, радиоактивных осадков. Иначе говоря, по мере развития промышленности — процесса, идущего все убыстряющимися темпами, — для нейтрализации вредных последствий этого процесса потребуется мобилизация все более разносторонних функций биосферы и, конечно, в первую очередь функции ее основы — совокупности одноклеточных организмов. Лишь тогда, когда промышленность перейдет на бессточную и беструбную технологию, роль биологической очистки может стать второстепенной.
Исключительно важна проблема регулирования теплового баланса Земли. От успешного ее решения зависит не только будущее человечества, но, по-видимому, и судьба жизни на нашей планете.
В принципе эта проблема вполне разрешима. Уже сейчас в результате человеческой деятельности идут два противоположных процесса: повышение температуры поверхности Земли в итоге сжигания органического топлива, работы атомных электростанций и увеличения концентрации CO2 в атмосфере и ее понижение вследствие запыленности атмосферы отходами человеческой деятельности, снижающей интенсивность солнечной составляющей теплового баланса. Масштаб этих процессов возрастает, что, с одной стороны, вызывает обоснованные опасения, а с другой — создает предпосылки для эффективного сознательного регулирования.
Даже современное, пока нерегулируемое увеличение концентрации углекислоты в атмосфере, составляющее 0,2% в год, согласно М. И. Будыко, отсрочивает оледенение планеты на тысячелетия. Более того, «при сохранении современных масштабов воздействия на атмосферу, а тем более при их увеличении возможность глобального оледенения может быть исключена», — пишет этот автор в уже цитированной монографии. Возникает противоположная опасность — перегрев планеты, что может вызвать таяние ледников Антарктиды, Гренландии, Северного Ледовитого океана и, как следствие этого, затопление огромных плодородных территорий. Переход к сознательному регулированию температурного режима планеты неизбежен. В арсенале способов подобного регулирования есть и такие, как строительство глубоко под землей предприятий, отличающихся усиленной теплопродукцией, или вынесение их в космос.